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Abstract  
 

The boundary knot method (BKM) based on the 

nonsingular general solutions, is a kind of typical boundary-

type meshfree collocation technique. Since the nonsingular 

general solution takes the place of the singular fundamental 

solution to obtain the numerical solution, only boundary 

points are needed during the whole solution procedures. This 

paper concerns a numerical investigation of the steady fluid 

flow problems, which is described by boundary value prob-

lems. Our purpose is to apply the BKM to deal with La-

place-type problems from a new perspective. Numerical 

results show that the BKM can be successfully applied to 

simulate steady fluid flow problems with two and three di-

mensions. 

 

Introduction 
 

In recent years, a variety of boundary-type meshfree 

methods [1, 2] have been introduced to various engineering 

problems in order to avoid the tedious mesh generation. For 

example, the behavior of a fluid flow system can be repre-

sented by the Laplace equation with boundary conditions. A 

number of pioneers have adopted traditional grid-based 

methods to simulate fluid flow problems governed by La-

place equations [3, 4, 5, 6]. For meshless methods, Li and 

his co-workers [7] applied collocation method with radial 

basis functions to simulate groundwater contaminant 

transport.  Long and his coworkers [8] used the 

Multiquadrics method to obtain the numerical solutions of 

Laplace equation of 2D steady groundwater flow, which was 

also extended to the research of Zhou and Zhang [9]. G. H. 

Schmitz and J. Edenhofer [10] investigated the exact closed-

form solution of the two-dimensional Laplace equation for 

steady groundwater flow with non-linearized free-surface 

boundary conditions. The method of fundamental solutions 

(MFS) has been successfully applied to groundwater flow 

problems governed by Laplace equations [11]. Compared 

with the traditional numerical methods [12], the MFS im-

plementation does not require integrations and discretization 

of the physical boundary as well as the physical domain.  

 

    As is known to all, the fictitious boundary of the MFS is 

somewhat arbitrary and not trivial to determine. In this case, 

the boundary knot method (BKM) [13, 14, 15] was proposed 

to alleviate the shortage of the MFS, using the non-singular 

general solutions instead of the singular fundamental solu-

tions. The BKM has the advantages that the collocation and 

source points can be placed on the same physical boundary 

of the solution domain.  

 

From what has been described above, we use the BKM to 

investigate the steady fluid flow problems governed by La-

place equations, which are approximated by the Helmholtz 

equation with small wavenumbers  . Numerical results are 

compared with analytical solutions to show the applicability 

of the BKM. In order to simplify calculating, this paper only 

concerns the Dirichlet boundary. Section 2 briefly introduces 

the BKM formulation for the Laplace-type problems. Fol-

lowed by Section 3, two numerical examples are presented 

and then we calculate their relative errors. Some conclusions 

are made in Section 4. 

 

The main procedure of the BKM 
 

To illustrate our theory, we consider the following govern-

ing equations for the two-dimensional steady fluid flow: 

 

                   
       

  
    (x, y) ∈ Ω            (1) 

                  
       

  
    (x, y) ∈ Ω             (2) 

           
      

  
 

   

  
           (x, y) ∈ Ω                (3) 

where  ,   are hydraulic head and source or sink, respective-

ly.   is hydraulic conductivity. Ω means the physical do-

main in  , d is the dimensionality. The head and fluxes 

boundary conditions are given by  

 

                          ∈                               (4) 

           
  

   
            ∈                             (5)  

where       are given hydraulic head on Dirichlet boundary 

   and source or sink on Neumann boundary   , respective-

ly.                    is the boundary of flow 
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field Ω. In this study, we only concern that there is no source 

or sink term, i.e.          . Eqs. (1)-(3) can be combined 

as a special case of the Poisson equation, i.e. the Laplace 

equation. It is well-known that the fundamental solution of 

the Laplace equation has singularity at the origin, but there is 

no non-singular general solution for the Laplace equation.  

Chen et al. [16] used the high-order general solutions of the 

Helmholtz and modified Helmholtz equations to evaluate the 

particular solution. However, a new parameter is introduced 

during the whole solution process which is somewhat arbi-

trary. Under such circumstance, we seek to find a new way 

to simulate the Laplace-type problems.  

 

In this study, we have the non-singular general solution 

for the following Helmholtz equation: 

                                                                     (6) 

where      is a Laplace operator,   is the wavenumber.  

Our fundamental theory can be stated as below. Since the 

numerical solutions are approximation of the exact solutions, 

we have the idea that the non-singular general solution for 

Helmholtz equations is a good approximation to the Laplace 

equation: 

                                                                               (7) 

This is under the assumption that the wavenumber   is 

sufficiently small. The non-singular general solution of Eq. 

(6) is given by            , where   denotes the Bessel 

function of the first kind,   represents the Euclidean norm 

distance. Since there is no singularity in the non-singular 

general solution      , all collocation knots are placed on the 

physical boundary and can be used as either source or collo-

cation points. Using the non-singular general solution      , 

the solution of Eq. (6) can be approximated by 

                     



N

j

ijjii ruyxu
1

* )(),(  ,                    (8) 

where   is the index of source points on physical boundary, 

  denotes the total number of boundary knots,    are the 

unknown  coefficients and               
         

  

the Euclidean distance, where   stands for index of colloca-

tion points on physical boundary. By collocating boundary 

Equations (4) and (5), we have: 
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Equations (9)-(10) can be written in the following linear 

matrix system: 

                         b ,                                              (11) 

where        is an interpolation matrix and   

               are the unknown coefficients. It should be 

noticed that, due to the global interpolation approach, the 

BKM produces a highly ill-conditioned and dense matrix 

system when a large number of boundary knots are used [19, 

20].  This problem needs further investigations.  

 

Numerical example and discussions      
 

To examine the accuracy and stability of the proposed 

method given in the above sections, we test two benchmark 

cases of homogeneous Laplace-type problems. The relative 

average errors (root mean-square relative error: RMSE) are:  

 

      
 

  

  
            

     
 

 

 

  

   

 

for             , or 

 

      
 

  

               
 
 

  

   

 

for             , where   is the index of test points,       

and         are the exact and numerical solutions on the 

test point   , respectively.    means the total number of 

test points. 
 

Circular domain      
 

The following exact solution will be compared with our 

numerical solutions 

                                  (x, y) = x + y.                              (12) 

A unit circular domain                     is taken 

into account with Dirichlet boundary condition only.  

 
Table 1. Relationship among wavenumber  , condition number 

Cond and relative average error RMSE, using boundary point 

number  =20 

  Cond RMSE 

0.1 18104037.8   
4104400.9   

0.01 18102365.4   
6105106.9   

0.001 18102753.1   
2105500.1   

0.0001 18107645.8   
7103791.3   
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   To investigate the influence of the wavenumber   on this 
problem, we fix the boundary point number   = 20. After 

calculating with MATLAB, relative average errors and con-

dition numbers of the interpolation matrix are given in Table 

1. We find that the relative average errors are acceptable for 

various wavenumbers. In particular, the optimum average 

relative error RMSE=            is obtained when the 

wavenumber  = 0.0001. Meanwhile, the condition numbers 

of the interpolation matrix are relatively small, which con-

tributes to the stability of the numerical solutions. 

 
Table 2. Relationship among boundary point number, condi-

tion number Cond and relative average error RMSE, fixing 

wavenumber   =0.0001 

N Cond RMSE 

10 17106106.5   
7107123.4   

50   
19100560.3   

7104738.3   

100 19103903.2   
7108530.4   

150                         

 

The wavenumber  =0.0001 is fixed, while the influence of 

the boundary point numbers on relative average errors and 

condition numbers of the interpolation matrix are given in 

Table 2. We can see that the RMSEs are very small, at 
           , when N=150. At the same time, the condi-

tion number of the interpolation matrix increases with the 

increasing boundary point numbers. 

  

Annulus domain 
 

Here, we choose the following exact solution: 

       yxyxyxu coshcossinhsin),(  ,              (13) 

which lies in the annulus domain                  
       with the outer and the inner boundaries      
                 and                         
respectively.  

 
Table 3. Relationship among wavenumber  , condition number 

Cond and relative average error RMSE, using boundary point 

number  =20 

  Cond RMSE 

0.1 33102374.2   0.0011 

0.01 33105997.2   0.0399 

0.001 33109172.6   0.0337 

 

With fixing boundary point number N = 20, Table 3 

shows the relative average errors and condition numbers of 

the interpolation matrix for different wavenumbers. It is 

clear that the relative average errors are also acceptable for 

various wavenumbers. When the wavenumber  = 0.1, we 

can calculate good RMSE= 0.0011. Meanwhile, the condi-

tion numbers of the interpolation matrix are much larger 

than the previous case, which may lead to the instability of a 

method. 

 
Table 4. Relationship among boundary point number, condi-

tion number Cond and relative average error RMSE, fixing 

wavenumber   =0.1 

N Cond RMSE 

10 33109685.2   0.0011 

20   
33102374.7   0.0011 

30 33100558.5   0.0011 

50 19101852.4   0.0011 

 

Similarly, it is clear from Table 4 that the RMSE main-

tains stable at 0.0011, because of the extremely large condi-

tion numbers of the interpolation matrix, at about     .  

 

Conclusions      
 

The BKM is applied to steady-state fluid flow problems in 

this paper and this method avoids the mesh-generation. Nu-

merical examples of steady fluid flow problems show the 

feasibility of the BKM, with acceptable results.  Since the 

BKM only needs boundary data of the physical domain dur-

ing the whole problem, it is promising to deal with more 

complicated fluid flow problems by choosing the optimal 

location and number of collocation points. 
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