

The Strategy on Adaptation to Climate Change using CO2 Capture and Recycle

Minjoung Jang, Episcopal HighSchool, Virginia USA, Grade 11, Mail : mjj888000@gmail.com

Abstract

In 2015, Paris Agreement regarding climate change warns us that human species will be exposed to a severe danger if people cannot solve the problem of climate change. MOFs present a solution to this problem, promising a more environmentally friendly and efficient alternative, capturing more CO_2 and requiring less energy to regenerate. The structural tunability of MOFs allows them to be optimised for the specific type of CO_2 capture to be performed. Thus, it is most effective strategy to retrieve emitted CO_2 and recycle it. Rather than just capturing the existing CO_2 , it is a fundamental alternative to build a technique that can recycle the captured CO_2 .

Keywords : Climate Change, MOF (Metal-Organic Framework), CO2 pyrolysis, Photodissociation of carbon dioxide (CO2)

Introduction

We all know that the cause of climate change is constant release of green-house gases. We all need to work together in order to reduce the amount of green-house gas for a sustainable development of humans. People need to especially reduce the concentration of CO_2 in the air. The counterattack of climate change will surely arrive. The problem of climate change could be solved with the power of modern technology. If we constantly put effort into solving the problem of climate change, it will be solved in 50 years[1]. As long as a modern scientific civilization continues, effluence of CO_2 will continue as well. This research's goal is to discover the potential of modern science regarding capturing and recycling of CO_2 .

Is the concentration of CO₂ the cause of change in climate?

The concentration of CO_2 in the earth's atmosphere now exceeds that of 400ppm. Global climate change has rapidly become one of the most prominent environmental and energy policy issues of our age. we are contributing greatly to the accumulation of so-called greenhouse gases (GHGs) in the atmosphere, which trap heat and block outward radiation[**3**]. Now there is an opinion which asserts that there is no scientific evidence that the greenhouse effect is not caused by the increase of concentration of CO_2 in the atmosphere[**2**]. It means that there is an opposing argument that there is no correlation between CO_2 in the atmosphere and change in climate. However, there is historical evidence that there is a correlation between constant increase in the concentration of CO_2 after the Industrial Revolution and the increase of atmospheric temperature. Therefore, it can be concluded that the increase of concentration of CO_2 is the cause of climate change as below(Figure 1)

Recent Change

Figure 1: **Source**: U.S. EPA. *A Student's Guide to Global Climate Change*. url: http://www.epa.gov/climatechange/students.

ISSN:2319-7900

Various methods for reducing the concentration CO2

The places where most amount of CO₂ is emitted are factories and transportations. The best way to reduce CO₂ concentration is to prevent CO₂ from being emitted into the atmosphere. If one equips car's exhaust system or factory's stack with CO₂ gas collecting facilities, it can prevent the release of CO_2 . This is the most certain way to prevent CO₂'s release beforehand. However, as it takes tremendous amount of money, it is nothing but impractical and ideal means. Next thing we can think of is to retrieve the existing CO_2 in the air. Currently, there are researches on storing CO2 in an underground chamber. However, underground space is limited, and this method takes too much construction costs. Also, there is a risk of soil contamination as well. CO₂ in the earth's atmosphere is used for plant's photosynthesis. Usually, people call the Amazon the lung of the earth. There is no problem with effusing amount of CO_2 that plants on the Earth can absorb. Effusion of CO₂ beyond that leads to an increase in the concentration of CO₂ in the atmosphere. To rephrase it, the problem of climate change will be solved when emission of CO₂ per hour is equal to an the amount that plants intake CO₂. Thus, a development of technique that retrieves excess of effusion of CO_2 is necessary. It is technically feasible to capture CO2 from flue gases and

store it in geologic formations. CCS(*carbon capture and storage*) would reduce the *effective* carbon intensity of energy by directly removing CO2 from flue gases and industrial processes and preventing its release to the atmosphere[**3**]. CCS technologies are currently not widely used as a way to avoid carbon emissions. It could be considered issues of cost for applying CCS technologies on a much larger scale[**3**].

What are the conditions for technique used for capturing CO₂?

We need a protocol for capturing CO_2 . There are two big rules that we can think of. First is that we should be able to retrieve a large amount of CO_2 with a small amount of money. The other one is that the equipment must be small and have mobility. To be more specific, it is as below:

- It should be able to retrieve CO_2 on the ground. It takes more facility if it were to retrieve underground or in the air. Also, it is more costly. CO_2 should be retrieved on an atmospheric pressure and normal temperature. Or else, the technique would need extra facility for changing the pressure and temperature. If it takes more money, it will be less practical. If the technique for retrieving CO_2 takes a lot of electricity, more power plants will be needed as well. Then, the emission of CO_2 will be increased in order to decrease the amount of CO_2 which is a contradiction. Thus, the technique should require small amount of money. It will be better if the technique can utilize solar energy. The equipment should be as small as possible. If we are to retrieve CO_2 with huge equipment, it would take a lot of space, become costly and less mobile. The equipment should be small in order to be mobile. If we can develop technology to capture and sequester the fossil fuel CO2 in a cost-effective and environmentally sound manner, we will be able to enjoy the benefits of fossil fuel use throughout the next century[4]. Technological improvements in power generation and capture technology can lower the capture costs.

What are methods to retrieve CO₂ efficiently.

Nano-technology is the core technology for collecting CO_2 in the air. There are many gases in the atmosphere. By using nano-technology, people can choose to collect only CO_2 If one observes CO_2 molecule, it is a three-dimensional structure.

Figure 2: Structure of CO₂ Source : www.climate-change-knowledge.org

 CO_2 always floats freely in the air as it is very light. It is same as small flour particle floating in the air. Thus, in order to capture CO_2 molecule, we need something with a nano-sized framework. In other words, we need something with a nano sized space where gas molecule such as CO_2 can freely travel. We need a nano-structured substance with porosity. Nanoscientists developed a porous material called MOF (Metal-Organic Framework) that can capture air particles. By using MOF, we can selectively capture CO_2 , and MOF has an excellent trapping capacity. MOF has a covalent bond between metal ion and organic ligand. One MOF can capture one CO_2 molecule.

Figure 3 : MOF

ISSN:2319-7900

Source : Amarajothi Dhakshinamoorthy et al, Metal– organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles, *Chem. Soc. Rev.*, 2014,43, 5750-5765, DOI: 10.1039/C3CS60442J

Recent extensive research into the design and synthesis of metal-organic frameworks (MOFs) has led to numerous practical and conceptual developments in that direction3–7. Specifically, the

chemistry of MOFs has provided an extensive class of crystalline materials with high stability, tunable metrics, organic functionality and porosity[**5**]. Metal-organic frameworks (MOFs)1,2, which are selfassembled from organic ligands and metal ions, are highly promising porous crystalline materials with the strong potential for gas separation, chemical sensors, catalysts and optical devices because of their large and accessible specific surface areas, uniform and tunable pore sizes, and diverse properties[**8**].

In essence, reticular synthesis can be described as the process of assembling judiciously designed rigid molecular building blocks into predetermined ordered structures (networks), which are held together by strong bonding. It is different from retrosynthesis of organic compounds10, because the structural integrity and rigidity of the building blocks in reticular synthesis remain unaltered throughout the construction processan important aspect that could help to realize fully the of benefits design in crystalline solid-state frameworks[5]. Thus, we need a structural substance that can connect multiple of MOF. That's where CNT (carbon nano tube) comes in handy. CNTs are efficient CO2 adsorbents and possess potential applications for CO2 capture.

Figure 4: carbon nano tubes

Why is MOF appropriate

MOF is a porous substance. Porous substance has an inner hole with diverse size, and several functional groups can be attached. In order for CO_2 to be captured by MOF, it must have a reaction with MOF. This reaction occurs between MOF and functional group. Thus, in order to have more CO_2 captured, there must be a number of reaction, and for a number of reaction, there must be many functional groups as well. MOF is formed through fusion between metal ion and organic molecule.

Combination of metal ion and organic molecule is the structure of MOF[6].

Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas[7]. Excellent adsorbent materials are the prerequisite of completing the operation smoothly and realizing high CO2 load, Metal-organic frameworks (MOFs), as a class of physisorbents, possess remarkable gas adsorption ability[7]. They are self-assembled of metal ions and organic ligands that involve O and N[7]. In organic molecule, there are aromatic hydrocarbons. Benzene is one of typical aromatic hydrocarbons. Benzene has hexagonal structure, and it is possible to replace hydrogen in benzene with other functional group.

Figure 5 Benzene, C6H6. Source : <u>www.chegg.com</u>

One can create a structure of MOF with several functional groups by attaching aromatic hydrocarbon with another aromatic hydrocarbon and attaching functional group to that aromatic hydrocarbon. By using this method, intersection of aromatic hydrocarbon stem with functional group will occur. By using this intersection, there will be a space in between. By controlling the size of inner hole, we can collect CO₂ physically. By creating a hole that has a size of CO_2 molecule, one can selectively collect CO₂, and this hole can work as a filter. Size, volume and physical-chemical conditions of pore of MOFs could realize orient design by changing or modifying organic ligands, widely used in gases storage and separation of mixture gases in recent years[7]. Thus, it can prevent gas other than CO_2 from entering MOF and prevent CO₂ from escaping.

Why should MOF be fixated

MOF takes a form of tiny and light powder, and it can be blown away with a light breath. In order to increase the efficiency of capturing CO_2 , MOF should be fixed on a single point. MOF is too light and small that it is hard to carry it around. Thus, there is a need to converge large amount of MOF into one lump. But, MOFs suffer from some limitations. One is their instability towards the solvent removal step performed during their synthesis[**9**]. Other drawbacks include their inability to provide strong, nonspecific interactions to retain small molecules of gas and the collapse of some MOF networks in the presence of humidity[**9**]. CNT(carbon nano tube) is a solution to this[**8**]. The main point in construction of MOF is to make a hole with a size of CO_2 molecule[**10**].

Every MOF has a characteristic structure with mesopores and nanopores of different dimensions. These cavities of the structure are only accessible via windows whose

36

ISSN:2319-7900

dimensions are also determined by the MOF structure, normally spanning from few nm or less than one[11]. To ensure the extensive use of MOF materials in industrial/ large-scale applications, a key technology is to develop hierarchically structured bulk materials such as composites to overcome the above problems[12]. Recent studies about the composites of MOFs and different substrates, carbon nanotubes have been reported to address the shortcomings of MOFs[12]. In particular, incorporation of carbon nanotubes (CNTs) into MOFs can obtain better crystals and enhance the composite performance because of the unusual mechanical, thermoconductive, electroconductive and hydrophobic properties of the CNTs[12]. The size of CO_2 molecule is 3.3 Å, while the size of water molecule is 1.9Å. It is important to block absorption of water molecule and induce absorption of only CO2. As a specific surface of clay of MOF gets bigger, the more CO_2 it will be able to absorb. MOF has flexible structure as it is formed between metal ion and organic ion. Thus, it is MOF's strongest point that the structure and its function can change accordingly with pressure, light, and temperature.

Why is CO₂'s reduction so hard to achieve

 CO_2 is in a gaseous state in air pressure and room temperature. CO_2 is formed with two oxygen atoms and a single carbon atom. Thus, as CO_2 has covalent bond and double bond, bonding power is very strong. As carbon is oxidized, it gives four electrons to oxygen and CO_2 is created. This bond is broken at 1500°C. And in order to disassemble both oxygen atoms from a single carbon, the temperature must be over 5000°C. It takes a lot of energy to disassemble CO_2 by heat energy

[Figure 6] the phase diagram for CO2: The animation shows the type of movement experienced by CO2 molecules in a particular phase. source : chemistry.tutorvista.com

To summarize the characteristic of CO_2 by using a phase diagram:

All three phases of CO2 exist simultaneously at the triple point. All three phases of CO2 exist simultaneously at the triple point. When the pressure is 1 atm, there is no temperature at which the liquid phase of CO2 exists. CO2 forms a supercritical fluid at temperatures less than 31 degrees Celsius. CO2 is a gas under normal conditions of temperature and pressure. When the pressure is 5.1 atm and the temperature is more than -56.7 degrees Celsius, CO2 exists as a solid.

We cannot only continue to pile up CO_2 just because it takes a lot of money to reduce CO₂ as it will not be efficient as time passes. In order to save a storage space, liquefaction is one the solution. However, as it takes a lot of money and energy to liquefy CO₂, it is not economically wise as well. While a variety of technologies and methods have been developed, the separation of CO2 from gas streams is still a critical issue[13]. Apart from establishing new techniques, the exploration of capture materials with high separation performance and low capital cost are of paramount importance[13]. The combination of CO2 capture and conversion is an attractive strategy for efficiently reducing CO2 emissions[14]. It is essential that the materials used in this strategy be able to capture and convert CO2 at atmospheric pressure and room temperature with only heat from the surrounding environment to avoid the generation of new CO2. Thus far, no material has been identified that satisfies these requirements[14]. For now, it is a best alternative to recycle the captured CO₂. The cyclic and thermal stability of MOFs during adsorption/desorption is very important when connected to practical application[13]. The cyclic CO2 adsorption of MOF-5 prepared by microwave synthesis showed that the uptake capacity is invariably near 3.6 wt% when cycled between 30 and 300 °C at atmospheric pressure through 10 separate adsorption/desorption cycles[13]. CO2 is a highly quadrupolar gas, whereas competitive sorbates in commonly concerned CO2 capture separation, including N2, CH4, and H2 are non-polar or weakly polar[13]. This means that there are profound differences in the interaction between these gas molecules and the pore surface of porous material, which can be taken advantage of when modifying the surface properties of MOFs to greatly enhance the adsorption and separation ability[13]. The surface properties of MOFs can be tuned not only by pre-design of ligands, metal-containing nodes, and MOF construction but also by post-modification of existing MOFs[13]. Open active metal sites located on the pore walls of aMOF provide an approach for the enhanced separation of (quadru)polar/non-polar gas pairs, such as CO2/CH4[13].] A photosensitive metal organic framework (MOF) -- a class of materials known for their exceptional capacity to store gases is a powerful and cost-effective new tool to capture and store, or potentially recycle, carbon dioxide[15]. The technology to release CO₂ when the light is shown to MOF is

ISSN:2319-7900

already developed[15]. The inclusion of Fe 3 O 4 magnetic nanoparticles (MNPs) within Mg-MOF-74 frameworks actually increased adsorption capacity in comparison to the native framework. When exposed to an alternating magnetic field, the MNPs within MFCs(magnetic framework composites) acted as "nanoheaters" to generate heat locally, triggering the release of the large majority of adsorbed CO2 from MFCs (Figure 6)[6].

[Figure 7] : CO 2 liberation from MFC triggered by the application of

an external alternating magnetic field.

Source : Reference 6.

Released CO_2 becomes a mixed gas between CO and H_2 by going through electrolysis process.

What is the most efficient way to decompose CO₂

Reducing CO2 emissions is an extensive and long-term task. there are three possible strategies with this regard—reduction of the amount of CO2 produced, storage of CO2, and usage of CO2[16]. The utilization of CO2 as a feedstock for producing chemicals not only contributes to alleviating global climate changes caused by the increasing CO2 emissions, but also provides a

grand challenge in exploring new concepts and opportunities for catalytic and industrial development[**16**]. Carbon capture and recycling (CCR) can be viewed as a way to introduce

renewable energy into the chemical and energy chain, by storing solar, geothermal, wind, or other energies in chemical form[**17**]. CO2 hydrogenation to methanol, DME(Dimethyl ether, CH3OCH3)

, and hydrocarbons appear already economically viable industrial processes if cheap sources of renewable H2/electrochemical power are available[**17**]. CO_2 must be heated in order for it to be decomposed to CO. It is commonly deemed highly efficient if CO_2 is decomposed

under 200°C. Currently, the technology to decompose

released CO_2 into CO, hydrogen, and oxygen under 200°C is being developed. Photosynthesis is a process of fixating CO_2 in the air. This process is similar to artificial photosynthesis. Reduction of CO_2 is turning CO_2 into something useful. We need a catalyst to facilitate the

reduction of CO₂. Au(gold), Ag(silver), and Zn are good CO2 reduction catalysts, displaying a high current efficiency for CO2 reduction, whereas Ni, Pt, and Fe are poor CO2 reduction catalysts and mostly produce hydrogen[18]. Cu shows good current efficiency but less than Au, Ag, Zn. Because gold is expensive, nano silver catalyst for changing CO2 into CO is being developed at the moment. There is a research that shows CO_2 can convert into CO fast is nano silver particle is distribute equally on top of carbon nanofiber. As it is cheaper to use silver while effective, it is appropriate to use silver as the catalyst. It could be produced CO with overvoltage that is only 60% of what is needed originally with silver nano particle. Overvoltage means that the electric energy that is being lost is high. So, for artificial photosynthesis with high efficiency, overvoltage should be low. In aqueous solution, when one induces a reducing reaction of CO₂, there is a problem of low efficiency in conversion because H_2 is created by reducing of $H_2O[18]$. When it is induced a reducing reaction of CO₂ using electrolysis with nana silver catalyst, it becomes a highly efficient conversion as it can save electricity[19]. As reducing reaction of CO₂ through electrolysis is possible in room temperature and normal pressure, it is less costly[18]. Moreover, it only requires water to do it. Even more, if it is possible to use solar energy for the energy needed for electrolysis, this technology will be semi-permanent; and problems with CO₂ can be solved. Let's look at below to find out several methods to induce reducing reaction of CO₂ and examine specific steps for electrolysis.

CO2 pyrolysis : CO_2 can be pyrolyzed into CO and O_2 . 60% of CO_2 is disassembled in 2,500°C. CO that returns to atmosphere can cause toxic problems. Some of CO makes contact with oxygen in the air and reduced into CO_2 once more. Therefore, CO should be captured before emitted into the air and used as a substance for other products. Pyrolysis of CO_2 and capturing CO is technically very difficult due to high temperature and short time available[**18**]. As pyrolysis takes a lot of energy, it becomes a paradox. to create CO_2 in order to reduce CO_2 . Also, this method is too costly.

It is to electrolyze CO_2 into CO and O_2 so that CO_2 is reduced to CO

Electrolysis: CO2 = CO + 1/2O2

As the formula above states, CO_2 is separated into CO and O_2 . However, as CO's emission can be problematic due to its toxicity, it is better to turn it into fuel or organic chemicals. There are two ways for electrolysis: high temperature and low temperature. High temperature electrolysis should not be considered because it takes a lot of energy. It is said that low temperature electrolysis is the most efficient way[18][19].

In other words, electrolysis is considered prominent for its ability to reduce CO_2 and turn it into CO and formic acid. Low temperature electrolysis uses polyelectrolyte membrane, acidic aqueous solution, or alkaline aqueous solution as an electrolyte and should be operated less than 100 degree Celsius[**18**]. Compared to high

38

temperature electrolysis that uses solid oxide aqueous solution, low temperature electrolysis is less efficient[**19**]. However, low temperature electrolysis is easier to build a system and uses less energy comparably. As all raw materials needed for reducing reaction is water and CO₂, by recycling electrolyte, there is no emission of chemicals[**19**].

As the system is simple and can be modularized, the process is simple too and economical. If the electric energy needed for the reaction can be provided by renewable energy that does not produce CO₂, it can reduce the net amount of CO_2 in the air even more. By converting CO₂ into chemicals such as formic acid(HCOOH) or methanol, this technology can be used as preservation technique for renewable energy[18]. Methanol is the most promising photo-reduced product of carbon dioxide because it can be transformed into other useful chemicals such as gasoline (petrol) using conventional chemical technologies, or easily transported and used as fuel in the automobile vehicles without major adjustments[20]. Effective conversion of CO2 into HCOOH can be achieved using CR(Copper Rubeanate)-MOF in aqueous media by means of potentiostatic electrolysis[21]. It showed that the quantity of products on the CR-MOF electrode was greater than that of Cu metal electrode[21]. If one induces reducing reaction of CO_2 in aqueous solution, H_2 will be produced inevitably as H₂O will be reduced as well. By collecting H₂, it can be used as hydrogen fuel cell as well[19].

Photo-dissociation of Co₂: Photodissociation of carbon dioxide (CO2) has long been assumed to proceed exclusively to carbon monoxide (CO) and oxygen atom (O). In the future, some Researchers would discover a way to tease oxygen molecules from carbon dioxide for nonbiological oxygen production in CO2-heavy atmospheres as below(Figure 7)

[Figure 8] : It shows that carbon dioxide can be split by vacuum ultraviolet laser to create oxygen in one step. Source : http://phys.org/news/2014-10-oxygen-molecules-carbondioxide. html

Technology for photo-dissociation of CO_2 is environmental friendly in that it uses solar energy[**20**]. But, It is referred as an artificial photosynthesis over technology for photo-dissociation of CO_2 Generally, as a ISSN:2319-7900 lot of energy is required for the reduction reaction of CO2, it is not really efficient. However, photodissociation that uses solar energy is innovative. Photodissociation is based on photosynthesis which synthesizes glucose from water and CO2 by using solar energy. Photosynthesis consists of light reaction and dark reaction. During light reaction, plants use chloroplast to absorb light and dissolve water to create hydrogen and oxygen. During dark reaction, by using hydrogen, CO_2 is reduced, and glucose is produced as below equation **6H2O + 6CO2 + hv(light) \rightarrow C6H12O6(glucose)+6O2.**

By imitating a photosynthesis that happens in nature, artificial photosynthesis is a research that tries to convert CO_2 and water into O_2 and liquid fuel using solar energy. The goal of artificial photosynthesis is to mimic the green plants and other photosynthetic organisms in using sunlight to make high-energy chemicals but with far higher efficiencies and simplicity of design for scale-up and large-scale production[22]. Target reactions were water splitting into hydrogen and oxygen (equation 1) and light-driven reduction of CO2 by water to give CO, other oxygenates, or hydrocarbons. Methane is shown as the product in equation 2, but the ultimate target is liquid hydrocarbons to power our existing energy infrastructure[22].

 $\begin{array}{ll} 2H2O \rightarrow O2 + 2H2 & [1] \\ CO2 + 2H2O \rightarrow CH4 + 2O2 & [2] \end{array}$

Thus, artificial photosynthesis consists of two technologies. One is to create oxygen and hydrogen by decomposing water using solar energy. Other one is to convert CO_2 into a useful chemical.

 CO_2 converts into CO and C_3O_2 (carbon suboxide) through photo-dissociation[23]. In photo-dissociation from CO_2 to CO requires UV photon. Condensed C_3O_2 polymer is recycled[23]. Photo-dissociation technique can not only be used for highly concentrated CO_2 in power plant but also be used with low concentrated CO_2 as well.

Conclusion

Recycling carbon dioxide is a great deal. Many scientists believe that it is not only worth the effort, but a crucial endeavor. It is necessary to do effort to clear the problem of the climate change using so-called "carbon negative" technologies. That means actually sucking the greenhouse gas out of the atmosphere and doing something productive with it. Several pilot projects on Recycling carbon dioxide (CO2) in air are operating or under construction. In near future, Carbon Capture and Utilization could overcome many of the drawbacks of carbon capture and recycling.

REFERENCE

[1] Robert Socolow et al, SOLVING THE CLIMATE PROBLEM, *Environment, December 2004, volume 46, no. 10, pages 8–19.*

ISSN:2319-7900

- B. Robinson et al, Environmental Effects of Increased Atmospheric Carbon Dioxide, Journal of American Physicians and Surgeons, Volume 12, Number 3, Fall 2007, p79-90
- [3] Soren Anderson et al, Prospects for Carbon Capture and Storage Technologies, *Resources for the Future*, 2003,
- [4] Jeremy David et al, THE COST OF CARBON CAPTURE, url:https://sequestration.mit.edu/pdf/David_and_ Herzog.pdf
- [5] Omar M. Yaghi et al, Reticular synthesis and the design of new materials, NATURE /VOL 423 / 12 JUNE 2003, 705-714
- [6] Haiqing Li et al, Magnetic Metal-Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release, Adv. Mater. 2015, DOI: 10.1002/adma.201505320
- [7] Yunxia Zhao et al, CO2 Capture on Metal-Organic Framework and Graphene Oxide Composite Using a High-Pressure Static Adsorption Apparatus, Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014, 34-37. DOI: 10.7763/JOCET.2014.V2.86
- [8] Yiyin Mao et al, General incorporation of diverse components inside metal-organic framework thin films at room temperature, *NATURE COMMUNICATIONS/5:5532/DOI:* 10.1038/ncomms6532.
- [9] Camille Petit et al, MOF-GRAPHENE COMPOSITES: AN INSIGHT INTO THE TEXTURE AND ADSORPTION PROPERTIES OF NEW MATERIALS, url: http://acs.omnibooksonline.com/data/papers/2010 _095.pdf
- [10] H. Kuzmany et al, Functionalization of carbon nanotubes, *Synthetic Metals 141 (2004) 113–122*
- [11] Nicolo` Campagnol et al, A hybrid supercapacitor based on porous carbon and MOF MIL100(Fe), *DOI:*

10.1002/cssc.201,url:https://lirias.kuleuven.be/bit stream/123456789/467371/2/Pre-

Peerreview+Campagnol+Hybrid+Supercapacito r+ChemElectroChem.pdf

- [12] Ying Yang et al, In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption, *Dalton Trans.*, 2014, 43, 7028,
- [13] Jian-Rong Li et al, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, *Coordination Chemistry Reviews* 255 (2011) 1791–1823
- [14] Yong Xie et al, Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer, 2013, NATURE COMMUNICATIONS / 4:1960 / DOI: 10.1038/ncomms2960
- [15] Bradley P Ladewig, Richelle Lyndon & Matthew R Hill (2014) The carbon sponge: squeezing out captured carbon dioxide, *Carbon Management*, 5:1, 9-11, DOI: 10.4155/cmt.13.74
- [16] Wei Wang et al, Recent advances in catalytic hydrogenation of carbon dioxide, *Chem. Soc. Rev.*, 2011, 40, 3703–3727
- [17] Elsje Alessandra Quadrelli et al, Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential, *ChemSusChem 2011*, 4, 1194 – 1215, DOI: 10.1002/cssc.201100473
- [18] Jong Hyun Jang et al, Low-temperature CO2 Electrolysis, 2015, KIC News, Volume 18, No. 2, 18-24.
- [19] Song Yi Choi et al, Electrochemical Conversion of Carbon Dioxide into Useful Chemicals, 2015, *KIC News, Volume 18, No. 2, 25-30.*
- [20] Ibram Ganesh, Conversion of Carbon Dioxide to Methanol Using Solar Energy—A Brief Review, Materials Sciences and Applications, 2011, 2, 1407-1415 doi:10.4236/msa.2011.210190
- [21] Reiko Hinogami et al, Electrochemical Reduction of Carbon Dioxide Using a Copper Rubeanate Metal Organic Framework, ECS Electrochemistry Letters, 1 (4) H17-H19 (2012), DOI: 10.1149/2.001204eel
- [22] Javier J. Concepcion et al, Chemical approaches to artificial photosynthesis, PNAS / September 25, 2012 / vol. 109 / no. 39
- [23] Yun Jeong Hwang et al, Artificial Photosynthesis, 2013, KIC News, Volume 16, No. 4, 01-17