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Abstract  
 

This paper proposes an output feedback controller for 

linear systems which contain sinusoidal exogenous inputs 

with unknown frequency magnitude, and phase. Unlike 

previous studies, we do not assume that the order of the 

exosystem is known. The global asymptotic convergence of 

the output error to zero is guaranteed under the assumption 

that an upper bound is known on the order of the exosystem 

and the plant does not have zeros, even though the proposed 

method does not identify the actual frequencies of the 

unknown exogenous input. 

 

Introduction 
 

 The problem of a systems asymptotically tracking 

prescribed reference inputs and/or asymptotically rejecting 

undesired disturbances is critical and significant in control 

theory. Solution to this problem has been actively studied 

since 1970 and coined as output regulation problem in the 

literature (for example, [1]-[3]). Based on the theory, we 

consider the problem of as linear system with the exogenous 

input representing the reference inputs and/or the 

disturbances, which is sinusoidal signals with unknown 

frequency, magnitude, and phase. In the literature of output 

regulation, the exogenous input is generated by an exosystem 

[3]. 

 

 For the known exogenous input, the solution to this 

problem is a very natural one [1], [3], [4]. On other hand, for 

the unknown exogenous input, some related works for linear 

systems can be found in [5]-[7]. The method provided in [5] 

guarantees exponential tracking of the reference and/or 

rejecting of the disturbance. However, the method requires 

the order of the exosystem. To overcome this constraint, in 

[6], it is shown that the regulation problem is solvable under 

the assumptions that an upper bound on the order of the 

exosystem is known and the plant is linear minimum phase 

systems. For non-minimum phase linear systems, a solution 

with an indirect adaptive approach has be proposed [7]. 

However, as shown in [6], the drawbacks of this approach is 

not popular in practive because of its complexity and some 

singularity problems for the computation of the controller. 

 

 The main contribution is to propose a numerically 

efficient approach to the design of global asymptotically 

stable output feedback controller for linear systems without 

zeros. The approach is designed by the help of adaptive 

observer developed in [8]. In particular, it requires only the 

upper bound on the order of the exosystem similar to the 

assumption in [6], [7]. However, the algorithm presented in 

this paper is provided that is simpler than that in [6] and 

does not involve any singularity problem of [7] because of 

the assumption that the plant does not have zeros. The 

proposed controller achieve the global asymptotic 

convergence of the output error to zero, even if it does not 

recover the actual frequencies since the persistence of 

excitation (PE) does not satisfied by the uncertain order of 

the exosystm [9]. 

 

Problem Statement 
  

The regulation problem is formulated for linear time-

invariant (LTI) single-input-single-output (SISO) systems 

modeled as 

  
( ) ( ) ( ) ( ),

( ) ( ) ( ),

x t Ax t bu t Pw t

e t cx t qw t

  

 
 (1) 

where 
nx  is the state, u  is the control input, w  is 

the exogenous input which includes reference (to be tracked) 

and/or disturbance (to be rejected), and e  is the output 

to be regulated to zero. The matrices A , b , and c  are 

known, but P  and q  are unknown. It is assumed that e  can 

be measured while x  and w  are not measurable. We 

suppose that the pair ( , )A b  is controllable and ( , )A c  is 

observable. In addition, we assume that, for some positive 

m , the exogenous input w  is generated by an exosystem 

   ( ) ( ),w t Sw t  (2) 

where 

  1 2

0 1
diag( , , , ),   ,

1 0
o o m o oS S S S S  

 
   

 
  

in which 1 2, , , m    are unknown distinct positive 

constants. Since the exosystem is only driven by the initial 

condition (0)w  and there is no assumption for the initial 

condition, some mode of the exosystem may be zero. Thus, 

the twice that of the positive integer m  actually represents 

an upper bound on the order of the exosystem. 
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The problem considered in this paper can be stated as 

follows. Given system (1) and exosystem (2), find a dynamic 

error feedback controller of the form 

   
( ) ( , , , ),

( ) ( , ),

z t f t z u e

u t h t z




 (3) 

such that lim ( ) 0t e t   and all the states of the closed-

loop system are bounded. To solve the problem, we pose 

some conditions on which the proposed controller is based. 

 

Assumption 1: The positive integer m  is known, while 

some parts of the exosystem’s initial condition can be zero.◇ 

 

In order to regulate e  to zero, we assume the following. 

Assumption 2: The plant (1) does not have zeros. ◇ 

 

By virtue of Assumption 2, it can be assumed that A , b , 

and c  are given by 

1 1

1 1

1 0 1

0
,  ,  ,

0 1

0 0 0

T

n n

n n

a b

A b c
a b

a b

 

     
     
       
     
     
     

 

where 1 2 1 0nb b b      and 0nb  . Also, it follows 

from [3, Theorem 1.9] that there exist matrices 
2n m . 

and 
1 2m   such that 

   
,

0 .

S A b P

c q

    

  
 (4) 

 

Main Result 
 

The following theorem represents the main result given in 

this paper. 

Theorem 1: Consider the systems (1) and (2) under 

Assumption 1 and 2, there exists a dynamic output feedback 

controller such that, for any initial condition: i) all the states 

of the overall closed-loop system are bounded and ii) 

lim ( ) 0t e t  .  ◇ 

First, we introduce the output feedback controller. Then, a 

proof of Theorem 1 will be given. 

 

A. Controller Design 
 

To solve the regulation problem, we design the dynamic 

output feedback controller as follows: 

 

  1

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ,

ˆ ˆ( ),

( ) ( , ),

ˆ ˆ( ) ,

c c c

T T
ad c c

c c

c

A b u e u L e c

K c e c

A Lc e u

u K T

    

 

  

     

  

    



 (5) 

where 

 

 

 

1 11 0 0 0

0 1 0 0

,  ,0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

1 0 0 ,

( , ) [1] [2] [ ]

                 [1] [2] [ ] ,

n n

c c

c

a b

a b

A b

c

e u a e a e a m e

b u b u b m u

   
   
   
   
   

    
   
   
   
   
   



    



 

in which, 
2[ ] n ma i   and 

2[ ] n mb i  , 1,2, ,i m , are 

given by 

1

1

1

1

1

1

[1] 0 1 0 0 ,

[1] 0 0 0 0 ,

[2] 0 0 0 1 0 0 ,

[2] 0 0 0 0 0 0 ,

[ ] 0 0 1 ,

[ ] 0 0 0 .

T

n

T

n

T

n

T

n

T

n

T

n

a a a

b b b

a a a

b b b

a m a a

b m b b

   

   

   

   

   

   

 

Here, the design parameters K  and L  are chosen such that 

A bK  and c cA Lc  are Hurwitz, respectively, and 

m m
adK   is any symmetric positive-definite matrix. In 

addition, 1 ˆ( )cT   is made by the following equation   

instead of ̂ , 

1

2 2
2 2 2 3

2 1
2 1 2 2 1

1 0 0 0

1 0 0

( ) ,

1 0

1

c

n m
n m n m

n m
n m n m

c

cA

T

cA

cA





 

  

 
   

 
   

  
  
  
  
  
  
  

   

 (6) 
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where 
0

A b
A

S

 
  
 

,  0c c ,  1 0 0   , 

1

0 1 0 0

0 1 0

0 0 0 1

0 0 0m

S





 
 


 
 
 
 
  

, 

1

2

1m

m













 
 
 
 
 
 
 
 

, 

and 1 2 2 1, , , n m      are the coefficients of the 

characteristic polynomial of A , i.e., 

  

1 2
1 2

2 2 2 2 4
1 2

2 2 1
1 2 1 2

det( ) det( ) det( )

(s )

          (s )

s .

n n n
n

m m m
m

n m n m
n m n m

sI A sI A sI S

a s a s a

s s

s s

  

  

 

 

  
  

    

    

    

    

 (7) 

Here, 1 2, , , m    are given by  

1 2 1

1 2 1

2 2 2 2 2
1 2

1

, , ,
m

m

m

i i i m i i

i i i i i

       
   

      

with 1 2,, , {1,2, ,m}mi i i  . 

Remark 1: In the designed controller (5), the adaptive 

observer parts are designed based on the proposed method in 

[8].   ◇ 

 

B. Stability Analysis 
 

In order to prove Theorem 1, some pre-works are required. 

Let :rx w  , :ru w , and : rx x x  . Then, it follows 

from (4) that 

   
,

.

rx Ax bu bu

e cx

  


 (8) 

Define, with  1 2

T

m       , 

 ( ) ,e

m
m m

m
m m

S

T

S

S

g

ga

s

a a g

a a a g

-
- -

-
- -

é ùé ù
ê úê ú
ê úê ú
ê úê ú
ê úê ú= ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê úë ûë û

1

2 2
2 2 2 3

2 1
2 1 2 2 1

1 0 0 0

1 0 0

1 0

1

L

L

MM M O M M

L

L

 (9) 

where 1 0  , 2 1  , 3 0  , 4 2  , , 2 1 0m   , 

2m m  . Now, with : ( )ew T w , the exosystem (2) and 

ru w  are transformed into an observable canonical form 

   
,

.r

w Sw

u w




 (10) 

From the equations (8) and (10), we rewritten as 

  

 

,
0 0

0 .

A b x bx
u

S ww

x
e c

w

       
        
      

 
  

 

 (11) 

The system (11) is transformed into, with 

: ( )
T

T T
cT x w   

 
, 

   
( , ) ,

.

c c

c

A b u e u

e c

  



  


 (12) 

The following lemma indicates that ( )cT   can be used as a 

state transformation matrix for all 
m  . 

Lemma 1: ( )cT   is nonsingular for all 
m   if 

Assumption 2 holds and the pair ( , )A c  is observable. ◇ 

Proof: From the definition of ( )cT  , it suffices to show that 

( , )A c  is observable for any q , which is equivalent that the 

matrix 

   

2

0

0 0

0 m n

A I b

c

S I





     
    
    
  

 (13) 

has full column rank for each l , which is an eigenvalue of 

either A  or S . Let l  be an eigenvalue of S . Then, 

because of Assumption 2, the matrix 
0

A I b

c

lé ù-ê ú
ê ú
ê úë û

 has full 

column rank. Thus, it follows from the structure of the 

matrix S Il-  that (13) has full column rank. On the other 

hand, let l  be an eigenvalue of A  but not of S . Then, (13) 

still has full column rank since so does 
A I

c

lé ù-ê ú
ê ú
ê úë û

. □ 

 

Define 
2n m

i
   by 1 2 m        and let 

 : 1 0 0i i   , 1 2:
T

m       , and 

:i i iN x    , where 

2

2( )

0

:

0

i n

i n

m i n

N I



 

 
 

  
 
 

. Then, it is seen 

that 
T T

cc    and  

( ) ( [ ] [ ] )i c c iA Lc a i e b i u       , 

which, together with (8), implies 
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   

 

( ) ( [ ] [ ] )

   ( ) (( ) [ ] )

           ( [ ] )

   ( ) ,

1 0 0 1 0 0

   1 0 0 .

i c c i i

c c i c c i i

i i

c c i i

i i i

i c i

A Lc a i e b i u N x

A Lc A Lc N N A a i c x

b i N b u N b w

A Lc N b w

N x

c







 

 

 

      

     

  

  

 

 

 (14) 

Thus,   is bounded since the matrix c cA Lc  is Hurwitz 

and ( )ew T w . 

 

If some parts of the initial condition in (2) are zero, i.e., 

1(0) (0) 0,  1,3,5, , 2 1
T

i iw w i m      , the scalar 

variable w  in (14) does not contain m  distinct signals (i.e., 

it is not sufficiently rich of order m  [9, Definition 5.2.3]). In 

this case, it is difficult or even impossible to show that ̂  

converges to   since the vector   is not persistence of 

excitation (PE) [9, Theorem 5.2.1]. So instead of proving it, 

we introduce the following lemma. 

Lemma 2: In the equation (5), ˆ( )t  is bounded and 

ˆlim ( ) 0t t   for any initial condition. ◇ 

Proof: Define ˆ:    , ˆ:    , and :    . Then, 

we have 

   

1

ˆ( ) ,

  ,

( ) .

c c

T T T T
ad c c ad c c

T
ad ad

c c

A Lc

K c c K c c

K K

A Lc

   

  

  

 

   

     

  

 

 (15) 

Define the Lyapunov function candidate 

   
2
1( ) ( ) ( ) ( ) .

2

T ad

t

K
V t t t d    



    

Then, its time derivative according to (15) is given by 

  

2 2
1 1

2

1

2 ( ) 2 ( )
2

  2 0.
2

T T ad
ad ad

T
ad

K
V K K

K

     


 

   

 
    

 

 (16) 

This implies that ( ) (0)V t V , and therefore, that   and 1  

are bounded, i.e., ̂  is bounded since ˆ     and   is 

constant. To use Barbalat’s lemma, let us check the uniform 

continuity of V . The derivative of V  is 

  1 14 .
2 2

T T T
adV K

 
     
   

        
   

 

It is easy to check that V  is bounded since 1 1, , , , ,       

are all bounded. Then, by Lemma 4.3 in [10], V  converges 

to zero. Therefore, from (15) and (16), 
T   tends to zero 

since 1  converges to zero. Finally, by (15), ( )t ( ˆ( )t ) 

converges to zero as time goes to infinity. □ 

 

Now, we present the proof of Theorem 1. 

Proof of Theorem 1: With the help of (5) and (8), the 

equation (8) can be written as 

 

 

 

   

1

1

1

1

1

1

ˆ ˆ( )

ˆ  ( ) ( )( )

ˆ  ( ) ( ) ( )

ˆ       ( ) ( )

ˆ ˆ  ( ) ( ) ( ) ( )

c

c

c c

m

c i i i

i

c c c

x Ax b w b K T

A bK x bKx b w b K T

x x
A bK x b K T T

w w

T N x

x
A bK x b K T T T

w

   

    

  

   

   













  

     

    
        

   

 
   

 
 

   



1 1 1

1 1

ˆ ˆ ˆ       ( ) ( ) ( ) ( ) .

m m

c c i i c i i

i i

T T T N x        

 

  
  

 


   




 

 

In the above equation, we have 

   1 1

1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 0

m

c c c c i i

i

x
T T T T N x

w
     



 
   

 
  

since ( 2 ) 2
ˆ( ) ( ) ( ) 0c c c n m mT T T    

   
 

 and 

1
( ) 0

m

i i ci
N T 


  . Therefore, we obtain 

    1 1

1

ˆ ˆ( ) ( ) ( ) .

m

c c i i

i

x A bK x b K T T      



 
    

 
 

  

Since A bK  is Hurwitz, this system is ISS (input-to-state 

stable) [11]. Then, the state x  is bounded since   converges 

to zero in (15) and i i   is bounded for any 1,2, ,i m  by 

(14) and Lemma 2. Therefore, from Lemma 2, 

i i iN x    ,     , and ( )
T

T T
cT x w   

 
, all 

the states ˆ ˆ, , , ,x     of the overall closed-loop system are 

bounded. 

 

Now we will show that the output error e  converges to 

zero. From      and 
T T

cc   , we have 

   .T
c c c cc c c c           

Then, since   and 
T   converge to zero, we obtain, with 

(12), 

   1
ˆ ˆ( ) 0    as    .c cc c e e t         (17) 
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Using similar arguments as in the equations (11) and (12) 

with ˆˆ ˆ ˆ: ( )
T

T T
cT x w   

 
, we obtain 

 

1 1

1 1 1

1 1 1

ˆ ˆ
ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆˆ

ˆ
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( , )

ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ  ( ) ( ) ( ) ( ) ( )

ˆ

ˆ

ˆ0

c c c

c c c c c c

c c c c c

x x
T T T

ww

x
T A T T b u T e u

w

x
T L e c T T T

w

A b x

S w

   

    

     



 

  

  

   
     
     

 
    

  

 
      

  

  
  

  
 

1 2

1
1

1 1 1

1 1

( ) ( )

1

ˆˆ ˆ( ) ( , ) ( , )
0

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ  ( ) ( ) ( ) ( ) ( )

ˆ

ˆ ˆ0 ˆ ˆ ˆ ˆ( ) ( ) ( )
ˆ ˆ0

  

c

c c c c c

c c c

M t M t

c

b
u T e u x u

x
T L e c T T T

w

A bK x x
T T T

S w w

T

 

     

   



  

 



 
     

  

 
      

  

    
       

        

  
4

3

1
1

( )
( )

ˆˆ ˆ ˆ ˆ( ) ( , ) ( , ) ( ) ( ).c c

M t
M t

e u x u T L e c      

 (18) 

From the equation (18), we have 

2 1 2
2

2
1 2 3 4

2

ˆ ˆ( ) 0 ( ) 0
0

0
ˆ      ( ) ( ) ( ) ( ) .

n
n n m n n m

m n

n m

m

I
x A bK I M t x I

M t w M t M t M t
I

 




  
            

  

  
      

  

 

    (19) 

Here, the states x̂  and ŵ  are bounded since ˆ( )cT   is 

nonsingular for any ̂  by Lemma 1. By virtue of ˆ( )cT  , 

1 1
ˆˆ x   since the first row of ˆ( )cT   is  1 0 0 . This 

implies that 1
ˆ( , ) ( , )e u x u   converges to zero by (17). 

Also, since ˆ( )cT  , ̂ , ˆ
ce c   converge to zero and ˆ,   are 

bounded, 1 4( ), , ( )M t M t  tend to zero. Then, by [11, 

Example 9.6], the systems (19) is ISS (input-to-state stable 

[11]) since the matrix A bK  is Hurwitz. Therefore, the 

state x̂  converges to zero since the input to the system (19) 

decays to zero, which implies that 
t

e t
® ¥

=lim ( ) 0 . □ 

 

A Numerical Example 
 

Consider an unstable linear system 

 

Figure 1. Simulation Results. (a) Output Error e , (b) Control 

Input u , (c) Estimated Values 1̂ (solid) and 2̂ (dashed). 

 

  

   

1 1 0 1 0 2 0
,

2 0 3 1 0 3 0

1 0 2 0 1 0 ,

x x u w

e x w

     
       

        

  

 

where the exogenous input w  is generated by an exosystem 

   1 2diag( , ) ,o ow S S w   

where the initial condition  1 2(0) (0) 0
T

w w   and 

3 4(0) (0) 0
T

w w    . Note that we suppose that the upper 

bound on the order of the systems is 4 ( 2 ,  2m m  ), but 

the actual order is 2 since  1 2(0) (0) 0
T

w w   for all 0t  . 

 

Now, we design the proposed controller (5). The design 

parameters K , L , and adK  are selected as 

 

 

 
3

20.6 40.2 ,

102.8 381.7 652.9 650.2 374.2 100 ,

1.0 10 .

T

ad

K

L

K





 

 

We carry out a computer simulation (Matlab/Simulink). For 

the simulation, let 

 1 1    and  2 2.   
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The simulation results are illustrated in Figure 1. As shown 

in Figure 1-(c), the estimated value 1 2
ˆ ˆ,   are not correct. 

However, its time derivatives converge to zero. Also, as 

shown in Figure 1-(a), the output error e  converges to zero. 

 

Conclusions 
 

We have presented a dynamic output feedback controller 

for known linear systems with unknown sinusoidal 

exogenous input representing the reference inputs and/or the 

disturbances. Although the proposed method requires the 

assumption that the plant does not have zeros, the controller 

has guaranteed that all the states of the overall closed-loop 

system are bounded and the output error converges to zero 

for any initial condition. In particular, it has been designed 

to be easy to implement under the only assumption that the 

upper bound on the order of the exosystem is known. In 

addition, it is simpler than the method proposed in [6] and 

does not involve any singularity problem for computation. 
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