
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

15

A FRAMEWORK TO MEASURE THE QUALITY OF SOFTWARE THROUGH EVALUATION USING OOAD MET-

RICS

A FRAMEWORK TO MEASURE THE QUALITY OF

SOFTWARE THROUGH EVALUATION USING OOAD

METRICS
Mr.S.Pasupathy, Associate Professor; Dr.R.Bhavani, Professor;

 Dept. Of CSE, Annamalai University, Tamilnadu, India;

 (e-mail: 1
pasuannamalai@gmail.com,

2
shahana_1992@yahoo.co.in)

Abstract

 With the tremendous increase in the growth of com-

puter, everything has been computerized. As technology de-

velops, everything has been modernized. In human life,

computer and its usage occupies major part in our day-to-day

activities. Most of our daily activities depend on computer.

For example, E-Ticket, E-Shopping, E-Learning and so on.

To make the process computerized, everything has

been programmed on computer. Based on the purpose, the

program can be categorized. To make the program simpler

and readable, OOAD can be used to develop the program

based on Object-Oriented. The program developed on

OOAD can be modular and functional.

Each program must be of best quality. The quality

of the program can be defined by measuring the error rate of

the program on compiling. The program can be evaluated in

number of phases by different level of programmers. After

completing all the phases, the error rate in the program can be

calculated and evaluate the percentage of marks. Based on

the percentage, the quality of software can be measured. This

can be proposed in this paper with efficient methodology.

Introduction

 Computer is an electronic machine but it

occupies major role in the human life. Computer reduces the

manual effort and performs the function much faster. So that,

it becomes more popular and essential in our life. Since,

computer is a machine and so it can be functioned only with

the help of user-defined program. Based upon the purpose,

the program can be defined in number of ways. The program

may be 10 lines or 100 lines or any more lines as per the pur-

pose of the program and the user requirement. As the number

of lines of code increases, the readability of the program be-

comes difficult. The good programmer is the one who devel-

ops the program with less number of lines of code.

To develop the program, many technologies and lan-

guages are there. One such technology is “Object Oriented

Analysis and Design (OOAD)”. OOAD is a technique that

consists of lot of metrics to validate and measure the quality

of the software.

OOAD is a software engineering approach that

models a system as a group of interacting objects. An object-

oriented system is composed of objects. The behavior of the

system results from the collaboration of those objects. Col-

laboration between objects involves those sending messages

to each other. OOAD is comprised of two parts:

 Object oriented analysis

 Object oriented design

Models of different types can be created to reflect the

static structure, dynamic behavior, and run-time deployment

of the collaborating objects of a system.

During the object-oriented analysis (OOA) phase ob-

ject-modeling techniques are used to analyze the functional

requirements for a system and create models which reflect the

logical design of the system. OOA focuses on studying and

understanding the problem first, initially ignoring the con-

cerns of an actual implementation. Many terms are used to

describe the key real-world concepts of an application.

 Problem Domain

 Application Domain

 Business Objects

 Domain Objects

 Problem Essence

 Key Classes

During the object-oriented design (OOD) phase of

the system, models are elaborated upon to include implemen-

tation specific details that show how the physical design of

the system will come together. It is viewed as an extension of

mailto:1pasuannamalai@gmail.com
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Object_%28computer_science%29

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

16

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 1, FEB 2016

analysis, more so than a distinct activity. OOD adds the de-

tailed design for each class:

 Names, data types, and access specifiers for

attributes.

 Names, return types, and parameter lists for

all methods.

 Associations and collaborations with other

classes.

OOA focuses on what the system does (its static

structure and behavior), OOD on how the system does it (it’s

run-time implementation).

The creation of program consists of following pro-

cess:

 Writing the program

 Compiling the program

 Executing the program.

The program written on any language must be com-

piled using the compiler to check for errors in the program.

The compiler reads the program, line by line and then analyz-

es the errors. The error may be of different kinds such as

syntax error, data type mismatch, missing colon, semicolon

and so on. When the compiler finds the error, it displays the

error to the user to clear it. Only after correcting all the er-

rors, the final step of execution takes places.

 In this paper, we have to measure the quality of

program. The quality of the program can be measured in var-

ious ways. But we measure the quality of program by calcu-

lating the error rate. In previous research work, the method to

calculate the error rate was described by analyzing the type of

error occurs. In this paper, we categorize the error and based

upon the error rate, the percentage of mark has to be evaluat-

ed. Thus, based on the percentage of marks, the quality of

program can be measured. Thus the proposed strategy pro-

vides efficient methodology to implement the object-oriented

metrics.

Previous Research

In paper [1], Deepak et al described that Software

metrics are required to measure quality in terms of software

performance and reliability related characteristics like de-

pendencies, coupling and cohesion etc. It provides a way to

measure the progress of code during development and having

direct relationship with cost and time incurred in the software

design and development at their later stages. These major

issues must be checked and informed early in the develop-

ment stage, so that reliability of any software product could

be ensured for any large and complex software project. Ob-

ject oriented software metrics directly focuses on the issues

like complexity, reliability and robustness of the software

developed using object oriented design methodologies. It re-

flects the time, cost and effort that would be incurred in de-

velopment at later stage. While the software in its develop-

ment stage, it was desirable that the complexity levels at eve-

ry stage should be minimized to make the end product more

reliable and manageable. Object oriented metrics provides all

parameters through which one can estimate the complexities

and quality related issues of any software at their early stages

of development. In the paper, authors have studied three ob-

ject oriented metrics namely MOOD Metrics, CK Metrics,

and QMOOD Metrics and given a case study to show, how

these metrics are useful in determining the quality of any

software designed by using object oriented paradigm.

In paper [2], Henderson described that Object orient-

ed approach was capable of classifying the problem in terms

of objects and provide many paybacks like reliability, reusa-

bility, decomposition of problem into easily understood ob-

ject and aiding of future modifications.

In paper [3][4][5], Briand et al stated that Object-

Oriented Metrics are useless if they are not mapped to soft-

ware quality parameters. Many number of quality models are

proposed to map parameters of the Object Oriented software

like Extensibility, Reusability, efforts, manageability and

cost. To know more about the internal structure of the product

one should know more about the interdependencies of param-

eters of metrics and Software quality parameters.

In paper [6][7], National Institute of Standards and

Technology and Sutherland reported that Incorrect and buggy

behavior in deployed software costs up to $70 billion each

year in the US. Thus debugging, testing, maintaining, opti-

mizing, refactoring, and documenting software, while time-

consuming, remain critically important. Such maintenance

was reported to consume up to 90% of the total cost of soft-

ware projects [8]. A key maintenance concern was incomplete

documentation [9]: up to 60% of maintenance time was spent

studying existing software (e.g., [10]).Human processes and

especially tool support for finding and fixing errors in de-

ployed software often require formal specifications of correct

program behavior (e.g., [11]); it was difficult to repair a cod-

ing error without a clear notion of what “correct” program

behavior entails. Unfortunately, while low-level program an-

notations are becoming more and more prevalent [12], com-

prehensive formal specifications remain rare. Many large,

preexisting software projects are not yet formally specified

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

17

A FRAMEWORK TO MEASURE THE QUALITY OF SOFTWARE THROUGH EVALUATION USING OOAD METRICS

[12]. Formal program specifications are difficult for humans

to construct [13], and incorrect specifications are difficult for

humans to debug and modify [14].

In paper [15], Halstead reported that a full survey of

software quality metrics was outside the scope of the article;

instead, they highlight several notable approaches. Halstead et

al. proposed Software Science (which did not prove accurate

in practice [16]), to provide easily measurable, universal

source code attributes.

In paper [17], Gabel et al described that as these

large specifications are imprecise and difficult to debug, this

article focuses on a second class of techniques that produce a

larger set of smaller and more precise candidate specifications

that may be easier to evaluate for correctness. These specifi-

cations typically take the form of two-state finite state ma-

chines that describe temporal properties, e.g. “if event a hap-

pens during program execution, event b must eventually hap-

pen during that execution.” Two state specifications are lim-

ited in their expressive power; comprehensive API specifica-

tions cannot always be expressed as a collection of smaller

machines.

In paper [18], More recently, Nagappan and Ball an-

alyzed the relationship between software dependences, code

churn (roughly, the amount that code has been modified as

measured by source control logs), and post-release failures in

the Windows Server 2003 operating system.

In paper [19], Graves et al described that they show

that relative code churn, or the amount of churn in one mod-

ule as compared to a dependent module, is more predictive of

errors than absolute churn (which we use here). This suggests

that more sophisticated measures of churn might be more

predictive in our model. They similarly attempt to predict

errors in code by mining source control histories.

In paper [20], Albrecht described that Function Point

Analysis (FPA) estimates value delivered to a customer, who

can help approximate, for example, an application’s budget,

the productivity of a software team, the software size or com-

plexity, or amount of testing necessary.

Research work

The aim of the paper is to analyze the program to

measure the quality of the program by evaluating the percent-

age of error rate occurred in the developed program. This can

be achieved by using OOAD metrics. OOAD metrics are of

numerous to measure the software in different ways.

As described earlier, the program written in OOAD,

has been compiled to check for errors. When the error has

been identified, it is to be categorized based on the type of

errors and it can be saved till the end of the program. Finally,

the error rate has been calculated and displayed to the user.

In this paper, the methodology has been extended to

evaluate the percentage of error rate and based on the resul-

tant percentage; the quality of software has to be measured.

The summary of the research work is discussed below:

In a company, there may be different levels of pro-

grammers, who can develop the program, compiling the pro-

gram and so on. The number of programmers and the level of

programmers can be varied depend upon the company stan-

dard. Based upon the company standard, we define several

parameters to evaluate the program.

One such parameter is to categorize the programmer

into several levels of programmers, such as ASE (Associate

Software Engineer), SSE (Senior Software Engineer), Pro-

gram Analyst, System Engineer, Junior Programmer.

These levels of programmers can be assigned with

certain roles and specified rules. In addition to that, we have

to specify the maximum error rate that can be allowable for

that level of programmer. This error rate can be allocated

based upon their level.

 This can be defined below:

Once the program has been developed, it undergoes

the process of compilation. Upon compiling, the details such

as who compile the program, what type of error occurs in that

program has been notified and tabulated as follows:

ASE a%

SSE b%

 Program Analyst c%

 System Engineer d%

Junior Programmer e%

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

18

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 1, FEB 2016

For each kind of error, the line number where the er-

ror occurred in the program can also be noted. In addition to

the specified parameters, one more parameter is to be defined

in this paper to award the score or mark for the error oc-

curred. For each type of error, the mark has to be specified

and it can be calculated for the identified error occurred in the

program to measure the quality of the program.

The next step of identifying the type of error is to

calculate the marks to be awarded. Finally the percentage of

marks can be calculated by dividing the number of lines of

code by the calculated total marks.

Where,

LOC – Lines of Code

Total - ∑
n
i=1 (No. of Mistakes * Marks Awarded)

 Finally, the quality of program can be evaluated by

analysing the level of programmer and then by compare the

maximum percentage of error occurred in the program.

 Consider, the maximum percentage of error allowed

to the programmer of level p1 be n%, the quality of program

can be calculated by comparing the percentage of marks with

programmer percentage. Suppose the percentage of marks

calculated be X, the quality of program can be measured as

follows:

 If X < n, quality = Good

 If X > n, quality = Bad

 Based upon the quality measured, we categorize the

program whether to be useful or not. These are all specified

in the XML file which is given below:

The outline of the methodology is given below: The

quality of the program can be evaluated by considering the

following criteria:

% of Marks = LOC

 Total

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

19

A FRAMEWORK TO MEASURE THE QUALITY OF SOFTWARE THROUGH EVALUATION USING OOAD METRICS

 Number of Lines of Code

 Level of Programmers

 Defined Error Rate

 Calculated Error Rate

 Quality of Program

Thus the proposed methodology provides the effi-

cient way to measure the quality of program. The proposed

method also contains the following algorithm which works

based on the given conditions:

Thus the proposed methodology provides the effi-

cient way to measure the quality of program. The proposed

method also contains the following algorithm which works

based on the given conditions:

Algorithm

Experimental Results
Consider the software organization have following

maximum acceptable error rate for each category of

software developers

Table for marks awarded for each type of error

 In our Experiment we consider SSE(Senior Soft-

ware Engineer) develops the following java program with

error,

/*senior software engineer(SSE)*/

import java.io.*;

class add

{

 pulic static void main(String args[])

 {

 int a,b

float c;

 a=10;

 b=0;

 c=a/b;

 System.out.println(“add=”+c);

 }

}

Mathematics

 Math typesetting can be done by Equation Editor, or by any

other system that produces clear math types. Symbols and

shorter expressions can be placed within the text, e.g.,

0i  and s rP P . More complex expressions should be

placed in a new line in display style:

   kmk PP
k

m
kP











 11 1)((1)

All equations should be numbered and placed in the center of

the column (using Tab key). Equation number should be

flushed to the end of the column (using Tab key). They

should be referenced like Equation (1). Unless it is absolutely

necessary, equation numbers should not have parts to them.

E.g., instead of using Equation 1(a) and Equation 1(b), please

number them as Equation (1) and Equation (2)

 The following table is the list of errors obtained by running

the above java code.

ASE 1%

SSE 2%

 Program Analyst 6%

 System Engineer 8%

 Junior Programmer 10%

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

20

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 1, FEB 2016

The above program has:

 Total no of lines=14

 Total Marks for error=11

 % of Marks =14/11 =1.2%

So the % of marks for SSE does not reach the maxi-

mum acceptable error rate of 2%, so SSE can continue their

work to complete the project.

 Our methodology is very efficient that is used to

evaluate the quality of the software. To test the efficiency of

the methodology, various experimental setups are constructed

and the result is analyzed.

 Our proposed methodology has been experimented

by taking a software company to measure the quality of pro-

gram developed by different level of programmers. The pro-

gram can be developed, and then it undergoes the compilation

process. Upon identifying the error, the error rate has been

calculated and finally the quality of program has been meas-

ured successfully.

 Thus our proposed methodology provides better ex-

perimental results and it is very much useful for all kinds of

users to analysis the quality of the software.

 Conclusion

The aim of the paper to measure the quality of pro-

gram has been successfully implemented in the proposed

methodology and various experimental setup has been under-

taken to evaluate the methodology.

Thus, the proposed method of this paper performs

better to measure the quality of software by calculating the

error rate occurred in the program. Thus our research work

completed successfully with efficient methodology proposed

in this work.

References

[1] Deepak Arora, Pooja Khanna and Alpika Tripathi,

Shipra Sharma and Sanchika Shukla, Faculty of En-

gineering,Department of Computer Science, Amity

University, “Software Quality Estimation through

Object Oriented Design Metrics”.

[2] J. Alghamdi, R. Rufai, and S. Khan. Oometer: A software

quality assurance tool. Software Maintenance and Reengi-

neering, 2009. CSMR 2009. 9th European Conference on,

pages 190{191, 21-23}, March 2010.

[3] L.C.Briand, J.Wuest, J.Daly and Porter V., “Explor-

ing the Relationships Between Design Measures and

Software Quality In Object Oriented Systems”,

Journal of Systems and Software, 51, 2000.

[4] L.C. Briand, W.L. Melo and J.Wust, “ Assessing the

Applicability of Fault Proneness Models Across Ob-

ject Oriented Software Projects”, IEEE transactions

on Software Engineering. Vol. 28, No. 7, 2002.

[5] P.Coad and E.Yourdon, “Object Oriented Analysis”,

Yourdon Press, 1990.

[6] National Institute of Standards and Technology,

“The economic impacts of inadequate infrastructure

for software testing,” Tech. Rep. 02-3, May 2002.

[7] J. Sutherland, “Business objects in corporate infor-

mation systems,” ACM Comput. Surv., vol. 27, no. 2,

pp. 274–276, 1995.

[8] R. C. Seacord, D. Plakosh, and G. A. Lewis, Mod-

ernizing Legacy Systems: Software Technologies,

Engineering Process and Business Practices, 2003.

[9] S. C. B. de Souza, N. Anquetil, and K. M. de

Oliveira, “A study of the documentation essential to

software maintenance,” in SIGDOC, 2005, pp. 68–

75.

[10] S. L. Pfleeger, Software Engineering: Theory and

Practice. Upper Saddle River, NJ, USA: Prentice

Hall PTR, 2001.

[11] D. Malayeri and J. Aldrich, “Practical exception

specifications.” in Advanced Topics in Exception

Handling Techniques, 2006, pp. 200– 220.

[12] M. Das, “Formal specifications on industrial-

strength code — from myth to reality,” in Computer-

Aided Verification, 2006, p. 1.

[13] H. Chen, D. Wagner, and D. Dean, “Setuid demysti-

fied,” in USENIX Security Symposium, 2002, pp.

171–190.

[14] G. Ammons, D. Mandelin, R. Bod´ık, and J. R.

Larus, “Debugging temporal specifications with

concept analysis,” in Programming Language De-

sign and Implementation, 2003, pp. 182–195.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

21

A FRAMEWORK TO MEASURE THE QUALITY OF SOFTWARE THROUGH EVALUATION USING OOAD METRICS

[15] L. Briand, S. Morasca, V. Basili, Property-Based Soft-

ware Engineering Measurement, IEEE Trans. Software

Eng. 22(1), 2000, pp. 68-85.

[16] P. G. Hamer and G. D. Frewin, “M.H. Halstead’s

Software Science - a critical examination,” in ICSE,

1982, pp. 197–206.

[17] M. Gabel and Z. Su, “Symbolic mining of temporal

specifications,” in ICSE, 2008, pp. 51–60.

[18] N. Nagappan and T. Ball, “Using software depend-

encies and churn metrics to predict field failures: An

empirical case study,” in ESEM, 2007, pp. 364–373.

[19] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,

“Predicting fault incidence using software change

history,” IEEE Trans. Softw. Eng., vol. 26, no. 7, pp.

653–661, 2000.
[20] Boehm, Barry W., Software Engineering Economics,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 2006.

Biography

MR.S.PASUPATHY received the B. E degree

in Computer Science and Engineering from Government Col-

lege Of Technology,Coimbatore in April -1990. He received

the M.E degree in Computer Science and Engineering from

Kongu Engineering College in the year Dec-2000. He worked

at Kongu Engineering College,Perundhurai , Erode from

1990 to 2001. He has been with Annamalai University, since

2001. He is pursuing his Ph.D in Computer Science and En-

gineering at Annamalai University. He published 4 papers in

international conferences and journals. His research interest

includes Object Oriented Analysis and Design and Software

Engineering.

