
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

126

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

LOGIC-BASED CONSISTENCY CHECKING

OF XRBL INSTANCES

Gianfranco D’Atri, University of Calabria, Italy

Abstract

The world leading standard for business reporting is XBRL,

which stands for eXtensible Business Reporting Language.

XBRL defines XML elements and attributes that can be used

to encode business reports in a non-ambiguous way. None-

theless, XBRL provides only basic validation capabilities.

To face this issue, an approach to validating the semantic

correctness of financial reports written in XBRL is proposed.

The idea is to represent the data present in XBRL reports by

means of the logic-based formalism OntoDLP, which roots
its semantics in the well–known paradigm of Answer set

Programming. The expressive power of OntoDLP then used

to model both simple and complex numerical validations on

XBRL instances. The availability of efficient engines for

evaluating OntoDLP programs enables the definition of a

system architecture, where the all the methods proposed and

discussed can be concretely implemented to support sophis-

ticated forms of reasoning over XBRL documents.

Introduction

The eXtensible Business Reporting Language (short: XBRL)

is the world leading standard for business reporting. From

the syntactical viewpoint, it belongs to the family of XML-

based languages. From the semantic viewpoint, data in

XBRL is reported according to a number of different con-

ceptual dimensions, and a domain ontology is concretely

made available in the specification as a reference metamodel

[3]. In principle, the ontological annotations of the XBRL

data might be used to support advanced forms of reasoning
over the financial reports, such as in particular to check the

correctness and the consistency of the results of arithmetic

formulas involving financial variables. However, XBRL

lacks of these advanced features and only very limited forms

of semantic validation are available.

Moving from the above observation, the paper investi-

gates the possibility of supporting validation of XBRL re-

ports by exploiting well-known reasoning methods and sys-

tems that have been developed to deal with enter-

prise/corporate ontologies, though not specifically XBRL. In

fact, the use of ontologies to conceptualize business enter-
prise information has attracted much research in recent

years. In particular, it has been observed that, in this context,

standard ontology-based mechanism based on the open

world assumption might be not appropriate, so that specific

onology languages founding on the closed world assumption

have been developed. Accordingly, we will hereinafter focus
on the OntoDLP language, which roots its semantics in the

Answer Set Programming paradigm (and hence on the

closed world assumption) [5], and which is supported in a

powerful environment named OntoDLV providing a user-

friendly visual environment and a robust persistency-layer.

OntoDLP supports all major ontology features includ-

ing classes, inheritance, relations and axioms. OntoDLP

strongly typed, and includes also complex type constructors,

like lists and sets. Moreover, OntoDLV a powerful interop-

erability mechanism with OWL, allowing the user to retrieve

information from OWL ontologies, and build rule-based

reasoning on top of OWL ontologies. The system is already
used in a number of real-world applications including agent-

based systems, information extraction, and text classifica-

tion. Therefore, OntoDLP is a rather solid candidate to con-

stitute the basis of a system supporting automatic validation

of XBRL data in concrete application domains. This topic is

addressed in the rest of the paper.

In particular, in order to end up with a self-contained

discussion, the next section will take a closer look at the

main features of OntoDLP, then we will focus on the salient

ingredients of the XBRL specifications. These two separate

worlds will be eventually merged together in Section, where
an approach to encode XBRL instances (and validation con-

straints defined over them) in terms of OntoDLP specifica-

tion is presented. An appealing feature of the encoding is

that the resulting OntoDLP specification can be fed to the

OntoDLV system to check consistency of XBRL instances.

This paves the way for the definition of a concrete system

architecture to reason about XBRL instances on top of the

OntoDLV system, which is illustrated in Section. Finally,

conclusions and a few remarks on interesting avenues for

further research are drawn in Section.

The Onto DLP language

In this section we overview OntoDLP, an ontology represen-

tation and reasoning language based on Disjunctive Logic
Programming (DLP). We assume the reader familiar with

DLP syntax and semantics [6], a nice introduction to DLP

can be found in [5, 4]. In the following OntoDLP presented

by means of a running example inspired by the one present-

ed in [8]. The description is limited to constructs that will be

used in the remainder of this paper. An in-depth description

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

127

LOGIC-BASED CONSISTENCY CHECKING OF XRBL INSTANCES

of OntoDLP be found in [8, 9].

Classes. The main construct in OntoDLP the (base) class. A

base class models a collection of individuals who belong

together because they share some properties. Classes are

defined by using the keyword class followed by its name.

Class attributes modeling instance properties are typed. They

are specified by means of pairs attribute-

name:attribute-type, where attribute-name is

the name of the property and attribute-type is the

class the attribute belongs to. Attributes can also take values

from the built-in classes string and integer (respec-

tively representing the class of all alphanumeric strings and

the class of non-negative integers). As an example the fol-

lowing class declarations model basic concepts of a (toy)
banking ontology:

class bank(name:string, asset:integer).

class account(balance:integer).

class branch(bank:bank, location:place,

asset:integer).

class place(name:string).

class enterprise(name:string,

country:place).

class person(name:string, age:integer,

father:person, mother:person,

residence:place).

The above statements model that banks have a name

and own an asset; the branches of a given bank are located

into a given place and also have an asset; accounts have a

balance; enterprises have a name and a country (which is a

place); persons have name, age, residence (which is also a

place), father and mother (which are other persons); and

finally, each place has a name. Note that class definitions

can be recursive (see attribute father of class person).

Individuals. Class instances, called objects, model the indi-

viduals of a domain. Objects are uniquely identified by a
constant called the object identifier (oid), and are declared

by asserting logic facts. For example, the following state-

ments

rome:place(name:"Rome").

john:person(name:"John", age:34,

father:jack, mother:ann,

residence:rome).

.assert that rome and john are instances of the class

place and person, respectively. The oid rome identifies

a place named “Rome” that fills residence attributes. Thus

john lives in Rome, and jack and ann are father,

mother of john, respectively.

Referential integrity and correctness of types is mandatory to

write well-formed instances. e.g., rome has to be declared

as a place identifier to properly fill residence attribute.
Associations among objects. Relations define associations

among objects. They are declared like classes, where the

keyword relation (instead of class) precedes a list of attrib-

utes. As an example, we model a relationship between per-

sons and their bank account as follows:

relation customerHoldsAccount(

customer:person,

account:account).

The instances of a relation are called tuples, and are de-

clared by logic facts. For instance, to model that account

acc001 is held by John, which holds account acc012 with

Ann we write:
customerHoldsAccount(customer:john,

account:acc001).

customerHoldsAccount(customer:ann,

account:acc012).

customerHoldsAccount(customer:john,

account:acc012).

Logic Programs. In addition to the ontology specification,

logic programs can be written to declaratively specify prop-

erties and reason on ontological data. Logic programs are

sets of logic rules. Logic rules are written according to the

well-known Prolog conventions, where variables begin with

uppercase letter, and terms by start by lowercase letter. The

implication symbol :- can be intuitively read as “if”. Rules

also may also feature disjunction v, negation as failure not,

and aggregation functions (see [1] for more details). The

rules can access the information present in the ontology. The
programmer can introduce a number of auxiliary predicates

(as paymentsNumber) which do not require an explicit

schema definition.

Rules can be collected in reasoning modules. reasoning

modules are the language components Reasoning modules

are identified by a name and are defined by a set of (possibly
disjunctive) logic rules. Syntactically, the keyword module

precedes the name which is followed by a logic program

enclosed in curly brackets. As an example consider the fol-

lowing module, which computes the number of payments

(withdrawals + deposits) performed on a bank account:

module computePaymentsNumber {

paymentsNumber(A, PayN) :-

A:account(),

#count{ W:withdrawals(A,W) }=Wnum,

#count{ D:deposits(A,D) }=Dnum,

PayN=Wnum+Dnum.

}

The logic rule can be read as follows: the payment

number PayN associated to account A is computed by sum-

ming the number of deposits Dnum with the number of

withdrawals Wnum associated to A. Note that the aggregate

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

128

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

#count is used to count withdrawals and deposits associat-

ed to a given account.

Intensional constructs. The notions of class and relation
introduced above correspond, from a database point of view,

to the extensional part of the OntoDLP language. Classes

and relations can also be defined intensionally (as views in

databases), in the sense that objects of a class can be “de-

rived” (or inferred) from the information already stated in an

ontology. This is obtained by means of logic rules. As an

example with the following statements

class richPerson(name:string).

P:richPerson(name:N)

:- P:person(name:N),

 A:account(balance:B),

 holdsSavingsAccount(customer:P,

 account:A), B > 1000000.

class richPerson collects (or re-classify) instances of

person, which are inferred by using a logic rule asserting

that a person P is rich if he holds a savings account A with a

balance B of more than one million. Intensional classes are

called collection classes in OntoDLP.

Importantly, the logic programs (set of rules) defining col-

lection classes must be normal and stratified (see eg., [2, 7]).

Intensional relations are defined analogously. For ex-

ample, the binary relation relative (modeling the common
ancestry among persons) is defined as follows:

intensional relation

relative (sub:person, obj:person).

relative(sub:X,obj:Y) :-

X:person(father:Y).

relative(sub:X,obj:Y) :-

X:person(mother:Y).

relative(sub:X,obj:Y) :-

relative(sub:X,obj:Z),

relative(sub:Z,obj:Y).

The above statements can be read as follows: X is rela-

tive of Y if X is parent of Y (by the first two rules), and X is a

relative of Y if exists a third relative Z of X and Y (last rule).

Taxonomies. Concepts in an ontology can be organized in

taxonomies. For instance, employees are a special category

of persons having extra attributes, like salary and company.

OntoDLV taxonomies by means of the inheritance feature.
For example the following statement

class employee isa {person}

(salary:integer, company:enterprise).

defines employee as a specialization (or subclass) of a more

generic concept or superclass, namely person. Attributes

defined in person (i.e., name, age, father, mother, and resi-

dence) are inherited by employee, and are implicitly present
with salary and company. Each OntoDLP has a common

built-in superclass called object.

Note that inheritance can be applied repeatedly, for ex-

ample
class checkingAccount isa {account}

(overdraftAmount:integer).

class savingsAccount isa {account}

(interestRate:integer).

class goldAccount isa {checkingAccount}

(minimumBalance: integer).

class youngAccount

isa {savingsAccount,checkingAccount}().

models that bank accounts are divided in checking and sav-

ings accounts. Moreover, bank may offer two special types

of checking account: gold account having a fixed minimum

balance; and young account, which is reserved to customers

aged up to 21 years, and is, at the same time, both a saving

account and a checking account. Moreover, instances of em-

ployee are also instances of person. For example, the in-

stance:

bob:employee(name:"Robert", age:25,

father:jack, mother:betty,

residence:rome, salary:2000,

company:microsoft).

is automatically considered an instance of person.

Intensional relations and collection classes can also be orga-

nized in taxonomies.

Axioms and Consistency. Axioms are a consistency-control

construct modeling sentences that are always true. If an axi-
om is violated, the ontology is inconsistent, i.e., it contains

information which is contradictory or not compliant with the

domain’s intended perception.

Axioms can be used for constraining the information

contained in the ontology and verifying its correctness. The

following axiom enforces that the father cannot be younger

than his son as follows:

::- X:person(age:AgeOfX,

father:person(age:AgeOfFatherOfX),

AgeOfFatherOfX < AgeOfX.

This can be read literally as: “it is not possible that there

is a person X having a father whose age is smaller than the

one of his children”.

XBRL

XBRL stands for eXtensible Business Reporting Language.

It is a XML-based language using tagging metadata to de-

scribe financial information. The language was introduced in

1998, and since then it has become a standard means of

communicating business reporting information between

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

129

LOGIC-BASED CONSISTENCY CHECKING OF XRBL INSTANCES

businesses and government authorities. XBRL provides a

language in which reporting terms can be authoritatively

defined and referred uniquely in financial statements or oth-

er kinds of compliance, performance and business reports.

XBRL documents are interchangeable between different

information systems in entirely different organisations, and

can cross the boundaries of different nations with different

legislation.

The core of XBRL is the XBRL2.1 specification, which
defines the language w.r.t. three different layers. The most

basic layer is the metadata layer, where the metamodel for

the data that can be described with XBRL is made explicit.

The second layer is the definition of the concepts referred in

financial reports. At a technical level, concepts correspond

to element definitions of an XML Schema. Basically, a con-

cept is a definition that provides the meaning for a piece of

information contained in a report. An example of concept is

“profit”. Related concept definitions are organized in hierar-

chies that are called taxonomies. Thus taxonomies capture

the meaning contained in all of the reporting terms used in a
business report, as well as the relationships between all of

the terms. These typically correspond to particular reporting

domains, and are usually produced by financial regulators

agencies, accounting standards setters, government agencies

and other groups with the goal of providing a clear and un-

ambiguous definition of the data to be written in a business

report. Taxonomies can be freely added and linked to exist-

ing ones, and there is no limit on the concepts that can be

added while extending existing XBRL definitions. For ex-

ample, international taxonomies may be extended by nation-

al regulators or large enterprises to meet specific reporting

requirements or to model specific reporting needs. Concept
definitions also define constraints (logical or mathematical

business rules) on what can be reported, to ensure quality of

reports. The semantics of concepts in a taxonomy, as well as

the constraints to be satisfied are expressed by means of a

linkbase. A linkbase is a collection of XML extended links

based on the linking language XLINK. An XBRL Instance

can refer to more than one taxonomy, and taxonomies can be

interconnected, extended and modified in various ways. The

set of related taxonomies is called a Discoverable Taxonomy

Set (DTS). A DTS is a collection of Taxonomy Schemas and

Linkbases.
A taxonomy defines reporting Concepts, but it does not

contain the actual values of facts based on the defined con-

cepts. The third layer of XBRL is in charge of representing

the actual instances that are used to populate the schema

defined in the second layer. The fact values are contained in

XBRL Instances and are referred to as facts. Instance docu-

ments are collections of facts, which are statements of the

form “profit for Acme Inc. in 2010 was $100m”. At a tech-

nical level, facts are represented by elements in an XML

document. Besides the actual value of a fact, an instance

provides contextual information necessary for interpreting it.

XBRL provides a fixed set of built-in information to be re-

ported in a fact. These include a reference to the concept this

fact is an instance of, the entity related to the fact, the period

to which the statement refers to, and the unit of measure

used for specifying the reported valued.

A typical XBRL instance document, thus, reports a set

of facts. Each item refer to a specific context (such as a

company or an individual), and it defines the period of time
to which the fact can be applied. Further contextual infor-

mation about the facts can be provided as scenarios, defining

the units for the metrics and references to XBRL taxono-

mies.

A number of different kinds of relationships can be ap-

plied to a given fact. To our ends here, the most interesting

kind of relationships are those defines as calculation rela-

tionships, where the parent element can be defined as a func-

tion of the values known for its children.

In fact, calculation relationships can be used for a num-

ber of different reasoning tasks, for instance, they might
allow to compare the calculated total to the total that is de-

clared in the specification. More generally, calculation rela-

tionships are meant to enforce integrity constraints on the

numerical data reported in the file. However, current valida-

tion systems for XBRL do not support sophisticated forms of

reasoning over such relationships. In particular, they:

• detect inconsistencies only among values that are of

the same period type (instant or duration);

• detect inconsistencies when facts are unreported,

even though they are implicitly specified via suitable

calculation rules;

• do not propagate values along the taxonomy.

Indeed, XBRL instances (as well as taxonomies and

linkbases) must comply with the syntax requirements im-

posed by the XBRL specification, which are mostly ex-

pressed using XML Schemas. Compliance with the XBRL

standard, as well as other checks that can be expressed by

means of an XML Schema file can be performed using

standard XML validation software. However, it might be the

case that special validation requirements are required that

cannot be expressed using XML Schemas, and these must be

handled using other validation technologies.

Logic-based Consistency Checking of

XRBL Instances

In this section we describe an approach for modeling XBRL

instances and validation constraints in OntoDLP. Roughly

the idea is to model the information present in an XBRL

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

130

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

instance in OntoDLP, and to use logic programming to mod-

el validation constraints and/or other business rules.

In the following, we first present an OntoDLP that mod-

els XBRL instances, and then we show how constraints on

the data of an XBRL instance can be modeled by means of

OntoDLP.

Modeling XBRL Instances. We now present an OntoDLP

that models the information present in an XBRL instance.

XBRL instances are stored in XML files. To improve reada-
bility, we will mention the constituent tags of an XBRL in-

stance and their corresponding concepts without explicitly

presenting the verbose XML syntax. We first overview the

main elements present in an XBRL instance, and then pre-

sent their OntoDLP. The representation is limited to ele-

ments that can be used for validating the information con-

tained in a business report, footnotes and other information

needed for rendering graphically XBRL instances is pur-

posely not considered in our model. We refer the reader to

the XBRL specification available on the Internet [3] for the

details.

Single facts or business measurement reported in an XBRL

instance file are stored in items. Each item usually holds a

value and always refers to a context. The context contains

information about the entity being described, the reporting

period and optionally a scenario that models the different

reporting purposes (e.g., actual, pro forma, budgeted) of a

business facts. The context basically associates a business

fact captured as an XBRL item with its meaning and locates

it w.r.t. time and other contextual information. The entity

documents the business, government department, individual,

etc. that fact describes, and may be associated with an op-

tional segment to identify the business segment more com-
pletely in cases where the Entity identifier is insufficient.

The period models the instant or interval of time for refer-

ence by an item, and it can be specified by reporting begin-

ning and ending dates, a specific instant, or it can be set to

forever (when a datum is not dependent of time).

XBRL items can be numeric, non numeric, or tuples.

Tuples allow to aggregate facts that cannot be independently

understood, e.g., because multiple occurrences of that fact

are being reported. Tuples have complex content and can be

made of items and other tuples. Numeric items are associat-

ed with a unit of measure (e.g., USD, EUR, number of
shares) and may be reported either with a precision (number

of digits counting from the left to be considered trustworthy)

or with a number of decimal places to which the value of the

fact represented may be considered accurate.

The elements of an XBRL instance can be modeled by

the following OntoDLP :

class Entity (identifier:string,

identifierScheme:URI)

class Context (entity:Entity,

period:Period)

class Period (starting:Date,

ending:Date)

class Instant (date:Date) {

X:Instant(date:Date) :-

X:Period(starting:Date,

ending:Date).

}

forever:Period (

starting:"0000-00-00",

ending:"0000-00-00").

relation Segment (

context:Context,

element:SegmentElement)

class SegmentElement (

name:string, value: XSDType)

relation containsSegmentElement (

parent:SegmentElement,

child:SegmentElement)

relation Scenario (

context:Context,

element:ScenarioElement)

class ScenarioElement (

name:string,

value: XSDType)

relation containsScenarioElement (

parent:ScenarioElement,

child:ScenarioElement)

class Item (

name:string)

class NumericItem isa { Item } (

unit:Unit, value: XBRLNumeric)

relation Precision (

item:NumericItem, value:integer)

relation Decimals (

item:NumericItem, value:integer)

class NonNumericItem isa { Item }

(value:string)

class Tuple isa { Item }()

relation TupleContainsItem (

container:Tuple,

contains:Item)

Basically, almost all elements are modeled by an

OntoDLP, and associations among elements are modeled by

relations. Given an XBRL instance file, each element can be

translated in the corresponding instance fact in OntoDLP.

Object ids can be valued either by taking the id associated

with the corresponding elements, or by using a proper gen-

eration strategy (e.g., based on a sequence generator).

More in detail, XBRL entities refer to the corresponding

term in a taxonomy by means of an identifier and of a URI

pointing to the namespace of the identification scheme. For

example:

<identifier

 scheme="http://www.nasdaq.com">

 SAMP</identifier>

identifies the company with NASDAQ ticker symbol SAMP

is modeled in OntoDLP :

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

131

LOGIC-BASED CONSISTENCY CHECKING OF XRBL INSTANCES

samp:Entity(identifier:"SAMP",

 identifierScheme:"http://www.nasdaq.com"

Items are instances of the Item class, which features a sub-
class for each specific type of element.

For example the following two are items:

<ci:capitalLeases contextRef="c1"

unitRef="u1" precision="3">

727432

</ci:capitalLeases>

<ci:concentrationsNote contextRef="c1">

Concentration of credit risk with regard

to short term investments is not considered

to be significant due to the Company’s

cash management policies. ...

</ci:concentrationsNote>

The first is a numeric one means that Capital Leases in

context c1 is 727000 accurate to 3 significant figures. The

second reports a textual note concerning context c1. These

are modeled in OntoDLP follows:

capitalLeases01: NumericItem(

name:"ci:capitalLeases", unit:u1,

value: 727432).

Precision(item:capitalLeases,

value:3).

concentrationsNote01: NonNumeriItem (

name:"ci:concentrationsNote",

value: "Concentration of

credit risk with regard to short

term investments is not

considered to be significant due

to the Company’s cash

management policies. ... ").

In turn, contexts associated using instances of the class

concept, and in our example c1 could be as follows:

c1:Context(entity:samp,

 period:forever).

A similar procedure can be applied for all the other

enities, for instance the following scenario is associated to

context c1

<scenario>

 <other:bestEstimate/>

 <fid:dwSlice>

 <fid:residence>MA</fid:residence>

 <fid:nonSmoker>true</fid:nonSmoker>

 <fid:minAge>34</fid:minAge>

 <fid:maxAge>49</fid:maxAge>

 </fid:dwSlice>

</scenario>

to indicate that the reported values relate to a "best esti-

mate" scenario for non-smokers residing in Massachusetts of

the specified age group. This is represented in OntoDLP
follows:

Scenario(context:c1,

element: otherbest1).

Scenario(context:c1,

element: dwSlice1).

otherbest1:ScenarioElement (

name:"other:bestEstimate",

value:"").

dwSlice1:ScenarioElement (

name:"fid:dwSlice",

value:"").

dwResidence1:ScenarioElement (

name:"fid:residence",

value:"MA").

dwSmoker1:ScenarioElement (

name:"fid:nonSmoker",

value:true).

dwminage1:ScenarioElement (

name:"fid:minAge",

value:34).

dwminage1:ScenarioElement (

name:"fid:maxAge",

value:49).

containsSegmentElement (

parent:dwSlice1,

child:dwResidence1).

containsSegmentElement (

parent:dwSlice1,

child:dwSmoker1).

containsSegmentElement (

parent:dwSlice1,

child:dwminage1).

containsSegmentElement (

parent:dwSlice1,

child:dwminage1).

Basically, an instance of this ontology can then be popu-

lated efficiently by analyzing an XBRL file and asserting

properly the objects of the ontology.

Figure 1: Validating XBRL Instances via OntoDLV .

Modeling Validation. XBRL instances must comply with

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

132

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

the requirements imposed by the XBRL specification, as

well as the must be coherent with the information modeled

by a DTS. Clearly, validation requirements may go beyond

the mere syntactical check that can be obtained by validating

an XML file w.r.t. an XML Schema, and so the standard

mandates that they must be handled using other validation

technologies.

As previously pointed out we are mostly interested in

calculation relationships, which may be defined by in a
linkbase. These can be modeled by a combination of logic

rules and OntoDLP.

First of all we point out that calculation arcs of a

linkbase can be easily modeled by axioms. For example

<calculationArc xlink:type="arc"

 xlink:arcrole="http://www.xbrl.org/

 2003/arcrole/summation-item"

 xlink:from="totalPrepaidExpenses"

 xlink:to="prepaidExpenses"

 weight="1.0"/>

requiring to sum (with weight of one) prepaid expenses

items into current assets can be expressed as:

::- not #sum{V,I : X:NumericItem(

name:"prepaidExpenses", value:V)}=CS,

NumericItem(name:"totalPrepaidExpenses",

value:CS).

This process can be generalized, and an axiom having in
the body a #sum aggregate properly filled by elements to be

accumulated can be produced automatically by translating

the this part of the linkbase in OntoDLP.

 relation summationArc (
 from:Entity, to:Entity)

summationArc(

 from:totalPrepaidExpenses,

to:prepaidExpenses, weight:1).

::- not

 #sum{V,I : F:NumericItem(value:V)}=CSW,

 CSW=CS*W, T:NumericItem(value:CS),

 summationArc(from:F, to:T,

 weight:W).

where summation arcs are represented by a relation in

OntoDLP. Analogously other linkbase arcs can be encoded

by means of OntoDLP, and can be exploited for modeling

constraints that are not checked by a pure syntactic validator,

such as items and values that can be inferred through es-

sence-alias relationships.

Additional constraints, that go beyond what can be ex-

pressed using a linkbase, can be specified directly using log-

ic programming. For example there is the possibility of ac-

cessing data specified in XBRL taxonomies, and we can
exploit it for encoding properties where the parent element

can be defined as a function of the values known for its chil-

dren.

The information present in the DTS can be used to en-

rich our ontology by populating the isA relation, that can be

used to model the structure of a taxonomy. Then the isA

relation can be exploited in constraints, for example the

above constraint can be extended to sum over all

subconcepts of a given concept as follows:

relation isA (super:Entity,

sub:Entity)

isA(super: X, sub:Z) :-

isA(super: X, sub:Y),

isA(super: X, sub:Z).

isA(super: Expenses,

sub:prepaidExpenses).

::- not

 #sum{V,I : F:NumericItem(value:V)}=CSW,

CSW=CS*W, T:NumericItem(value:CS),

summationArc(from:F, to:TS,

weight:W), isA(super: TS, sub:T).

Clearly, besides constraints asserted in linkbases, one

may think to design more complex requirements by exploit-

ing logic rules and axioms. These can be easily added to the
ontology, which thus provides a mean of implementing (us-

ing a declarative language) involved consistency checks on

XBRL instances.

System Architecture

We propose a logic-based approach to validation of XBRL

instances. The architecture of a system implementing our

approach is depicted in Figure 1. The validator takes in input

a number of XBRL Instance documents. The first module

applies standard XML processing technology to (i) discover

the Discoverable Taxonomy Set (DTS) associated with the

input documents; and (ii) applies the syntactic checks of

conformance with the files in the discovered DTS. Recall

that a DTS is a collection of taxonomy schemas and
linkbases. The bounds of a DTS are such that the DTS in-

cludes all taxonomy schemas and linkbases that can be dis-

covered starting from the instance files, and following links

or references in the taxonomy schemas and linkbases includ-

ed in the DTS. The DTS discovery process is fully described

in the XBRL specification [3]. Concerning the syntactic

checks, these include the basic validation of instance docu-

ments w.r.t. the XML schemas defining taxonomies, as well

as a number of other syntactical coherence tests. The result

of these preliminary test are immediately printed in the final

validation report. In case this first validation succeeds, the
discovered DTS together with the input instances are passed

to the next modules which are the kernel part of out logic-

based approach to validating XBRL instances. In particular,

these are read and processed by the OntoDLP module. The

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

133

LOGIC-BASED CONSISTENCY CHECKING OF XRBL INSTANCES

encoder creates an instance of the XBRL ontology described

in previous section, modeling to the input documents and

their constraints. Basically suitable logic facts model XBRL

facts, and a number of logic rules and axioms model the val-

idation to be performed. This specification is fed as input to

the OntoDLV which executes an ontology consistency

checking task. The result of this checking step is used to

produce he final report, which will include also suitable mo-

tivations in case of failure of some specific axiom.
Note that the architecture depicted in Figure 1 can be

easily extended to incorporate additional checks, which may

be specified either in OntoDLP by using other technologies,

such as XSLT transformations. Indeed, the syntax checking

and discovery module can be cascaded with other validation

software, e.g., running XSLT specifications, that produce

additional information to be added to the final report. More-

over, the OntoDLP can be configured to receive additional

reasoning modules that performing complex checks directly-

specified in in logic that, for instance, cannot not be modeled

using current XBRL specifications.

Conclusion and Ongoing work

In this paper we have approached the problem of validating
financial reports written in XBRL by using logic-based

technologies. The idea is to represent by means of a logic-

based language called OntoDLP data present in XBRL in-

stance documents. The expressive power of OntoDLP then

used to model both simple and complex numerical valida-

tions on XBRL instances. This paper paves the way for de-

veloping an advanced system for validating XBRL instanc-

es.

As far as future work is concerned, we plan to properly

extend it to cope with all features of XBRL (e.g., supporting

multi-dimensional instance sets), and we will design a li-
brary of logic programs containing general purpose valida-

tion constraints. Moreover, we plan to implement our pro-

posal by exploiting the OntoDLV and to experiment with in

on real-world XBRL instances.

Acknowledgments

The author is grateful to Nicola Leone for the advise of us-

ing logic programming as declarative language for checking
XBRL instances. He is also grateful to Gianluigi Greco and

Francesco Ricca for their valuable comments in an early

version of this paper.

References

[1] Mario Alviano, Francesco Calimeri, Wolfgang Faber,

Nicola Leone, and Simona Perri. Unfounded sets and

well-founded semantics of answer set programs with

aggregates. J. Artif. Intell. Res. (JAIR), 42:487–527,

2011.

[2] Krzysztof R. Apt, Howard A. Blair, and Adrian Walk-

er. Towards a Theory of Declarative Knowledge. In

Jack Minker, editor, Foundations of Deductive Data-

bases and Logic Programming, pages 89–148. Morgan

Kaufmann Publishers, Inc., Washington DC, 1988.

[3] XBRL Consortium. Xbrl consortium standards web
site. 2014.
http://specifications.xbrl.org/specif

ications.html.

[4] Thomas Eiter, Wolfgang Faber, Nicola Leone, and

Gerald Pfeifer. Declarative Problem-Solving Using the

DLV System. In Jack Minker, editor, Logic-Based Ar-

tificial Intelligence, pages 79–103. Kluwer Academic

Publishers, 2000.

[5] Michael Gelfond and Vladimir Lifschitz. Classical
Negation in Logic Programs and Disjunctive Data-

bases. New Generation Computing, 9:365–385, 1991.

[6] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thom-

as Eiter, Georg Gottlob, Simona Perri, and Francesco

Scarcello. The DLV System for Knowledge Represen-

tation and Reasoning. ACM Transactions on Computa-

tional Logic, 7(3):499–562, July 2006.

[7] Teodor C. Przymusinski. On the Declarative Semantics

of Deductive Databases and Logic Programs. In Jack

Minker, editor, Foundations of Deductive Databases

and Logic Programming, pages 193–216. Morgan
Kaufmann Publishers, Inc., 1988.

[8] Francesco Ricca, Lorenzo Gallucci, Roman

Schindlauer, Tina Dell’Armi, Giovanni Grasso, and

Nicola Leone. OntoDLV : an ASP-based system for

enterprise ontologies. Journal of Logic and Computa-

tion, 2009.

[9] Francesco Ricca and Nicola Leone. Disjunctive Logic

Programming with types and objects: The DLV Sys-

tem. Journal of Applied Logics, 5(3):545–573, 2007.

Biographies

 G. D’ATRI is professor in Computer science at the Uni-

versity of Calabria. He studies aspects of computer science

related to economy and money.

Gdatri <gdatri@yahoo.com>

