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Abstract  
 

Creating search histories are a difficult process in the web. 

The user search logs are rapidly increasing in the field of 

data mining for finding the user interestingness.  Present 

days more number of queries can be passed to the server for 

relevant information most of the search engines retrieves the 

information based on the query similarity related links with 
respect to the given query.   This paper we stressed on the 

concept explains the problem of organizing a user’s histori-

cal queries into groups in a dynamic and automated fashion. 

In this paper we are proposing an efficient clustering mecha-

nism for group up the similar type of query that helps in or-

ganizing user search histories. 

 

Introduction 
 
 Search mechanism is the keyword explaining the way we 

store and retrieve data at perfect appropriation and based on 

the   requirement.  The relationships between the searched 

and searching data the reformulated queries come into exist-

ence. We change this model to hierarchical query model 

distribution. As of today the indexed web contains at least 30 

billion pages. In fact the overall web may consist of over 1 

trillion unique URLs more and more of which is being in-

dexed by search engines every day. Out of this users typical-

ly search for the relevant information that they want by pos-

ing search queries to search engines. The problem is that the 
queries are very diverse and often quite vague and or ambig-

uous in terms of user basic inputs. Most of the individual 

queries may refer to a single concept, while a single query 

may correspond to several techniques. For organize and 

bring some order to this massive unstructured dataset search 

engines cluster these queries together to group similar items. 

To increase usability, most commercial search engines and 

also augments their search facility through additional ser-

vices such as query recommendation or query suggestion. 

These services make it more convenient for users to issue 

queries and obtain accurate results from the web search en-

gine, and thus it is quite valuable. From the search engine 

view efficient group of search queries is a necessary pre req-

uisite for these services to function well. As the size and 

richness of information increases on web because does the 

variety and the complexity of tasks the users try to complete 

online. End users are no longer content with issuing simple 

navigational queries. The remaining is informational or 

transactional. Since users now pursue much broader infor-

mational and task oriented goals such as arranging for travel 
of future, managing their finances or planning their purchase 

plans. However the primary means of accessing information 

online is still through keyword queries to a web search en-

gine. Each step requires one or more queries, and each query 

results clicks on relevant pages. The K-means algorithm is 

one of the most frequently used investigatory algorithms in 

data analysis. The proposed approach of algorithm finds to 

locate K models or averages throughout a data set in such a 

way that the K prototypes in some way best represents the 

data. However the algorithm is known to suffer from the 

defect that the means or prototypes found depend on the 
initial values given to them at the start of the simulation: a 

typical program will converge to a local optimum. There are 

a number of heuristics in the literature which attempt to ad-

dress this issue but the fault lies in the performance function 

on which K-means is based. In this paper we   are introduc-

ing an enhanced dbscan algorithm for organizing the user 

search histories. 

 

Related Work 
  

In order to make the things proper, we need to explore 

things which make us to explore. In this paper we explore 

and evaluate strategies for how to automatically generate for 

learning retrieval of functions from observed user behavior 

on the approach of used data or clicked data. The concept of 
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query similarity was originally used in information retrieval 

studies: measuring the similarity between the content-based 

keywords of two queries. However the problem with using 

this in the query log environment is that users’ search inter-

ests are not always the same even if the issued queries con-

tain the same keywords. For instance, the keyword Apple 

may represent a popular kind of fruit whereas it is also the 

keyword of a popular company “Apple Inc.”. Subsequently 

to measure similarity between two queries, the query repre-

sentation of a vector of URLs in a click through bipartite 

graph has been adopted. No matter how large the query log 
data set it is possible that the complete search intent of some 

queries may not be adequately represented by the available 

click-through information. In a large scale query log, there 

may be no clicked URL for the query Honda vs. Toyota. But 

there is no relevant to the query Honda on the basis of this 

click through data there is no similarity. Therefore existing 

query log data is not accurate enough for analyzing users’ 

search intent especially for those queries without clicked any 

URL. 

 

Using Query Keywords 
  

The first group of related clustering approaches is certain-

ly those that cluster documents using the keywords it. In 
proposed approaches in general a document is represented as 

a vector in a vector space generated by the keywords. Acad-

emicians have been concerned mostly with the following 

two aspects: 

a) Similarity function. 

b) Algorithms for the clustering process.  

Keyword based document clustering has provided interest-

ing results. One contributing factor is the large number of 

keywords contained in documents. Even if some of the key-

words of two similar documents are different, there are still 

many others that can make the documents similar in the sim-
ilarity calculation.  However because, specifically the que-

ries submitted to the web search engines usually are very 

short in many cases it is hard to deduce the semantics from 

the query itself. Therefore keyword alone does not provide a 

reliable basis for clustering queries effectively. In addition, 

words such as where and who are treated as stop words in 

traditional IR methods. For questions however these words 

encode important information about the user’s requirement 

specifically in the new-generation web search engines such 

as Ask Jeeves. Considering an example whose input parame-

ter is the user intends to find information about a person. So 
even if a keyword based approach is used in query cluster-

ing, it should be modified from that used in traditional clus-

tering document. The entire question is represented as a 

template in accordance with the question type. During input 

question evaluation, the input requirement template may be 

elaborated using a morphological changes, in our proposed 

case, we found that well-formed natural language input 

questions represented only a small part of queries. Most 

probable queries are simply short parts of phrases or key-

words. 

 

Using Hyperlinks 
  

Because of the limitations of keywords people have been 

looking for additional criteria for document clustering or 

grouping. One of them is the hyperlinks between groups of 

documents. The hypothesis is related hyperlinks connect 

similar documents. The proposed idea had been used in 

some early studies in IR. More recent examples are Google 

and the hub calculation of Kleinberg.  Although Google does 
not perform document clustering explicitly, its Page Rank 

algorithm still results in a weighting of hyperlinks to a doc-

ument, it is then direct to know the documents that are the 

most strongly related to it according to the weights of the 

hyperlinks from the document. Google’s use of hyperlinks 

has been mostly successful, organizing and making it one of 

the best search engines currently available. The same idea is 

difficult to apply to query clustering because there is no link 

between Queries. 

 

Proposed Work 
  

To determine an appropriate clustering has to choose an 

appropriate clustering algorithm. There are many clustering 

algorithms available. The main characteristics that guide are 

the following: As query logs usually are more, the algorithm 

approach should be capable of handling a large data set 

within reasonable time and space constraints. The algorithm 

should not require manual setting of the resulting form of the 

clusters for consideration number of maximal size of final 
clusters. It is not reasonable to determine these Parameters in 

advance. Because we only need to find frequently asked 

questions, the proposed algorithm should filter out those 

queries with low frequencies. Due to that reasons the log 

data changes daily, the algorithm should be incremental. The 

density-based clustering method DB SCAN and its incre-

mental version Incremental DB SCAN satisfy the above 

requirements. Our proposed DB SCAN does not require the 

number of clusters as an input parameters the cluster consists 

of at least the min number of points—MinPts (to eliminate 

very small clusters as noise); and for each point in the cluster 

and there is another point in the same cluster whose distance 
is less than the distance threshold Eps. This approach makes 

use of a spatial indexing structure (R*-tree) to locate points 

within the Eps distance from the core points of the clusters. 

Total clusters consisting of less than the minimum number 

of points are considered as “noise” and had been discarded. 

Average time complexity of this DB SCAN algorithm is O 

(n*logn). Previous experiments showed that DB SCAN out-

performs CLARANS by a factor of between 250 and 1900; 
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it increases with the size of the data set. Its ability of Incre-

mental DB SCAN to update incrementally is due to the den-

sity-based nature of the DB SCAN approach , which the 

insertion or deletion of an object only affects the neighbor-

hood of this entity and based on the formal definition of 

clusters, it has been proven that the incremental  algorithm 

yields the same results as DB SCAN. To find a cluster, DB 

SCAN starts with an arbitrary point p and retrieves all points 

density-reachable from p with respect to. Min distance (Eps) 

and minimum number of points (Min Pts). If p is a core 

point, it procedure produces a cluster.  If p consider is a bor-
der point p and no points are density- reachable from p and 

DB SCAN visits the next point of the database therefore use 

global values for  Eps and MinPts ,the algorithm DB SCAN 

may merge two clusters according to definition 5 into single 

cluster, if two clusters of different density are “close” to 

each other. Let us consider the distance between two sets of 

points S1 and S2 be defined as dist (S1, S2) = min {dist (p,q) 

| p∈S1, q∈S2}. Then, two sets of points having at least the 

density of the thinnest cluster will be separated from each 

other only if the distance between the two sets is larger than 

min scale distance and consequently. There is no disad-
vantage because the recursive application of DB SCAN 

yields an elegant and very efficient basic approach. Further-

more and recursive clustering of the points of a cluster is 

only necessary under conditions that can be easily detected 

and the following, we present a basic version of DB SCAN 

omitting details of data types and generation of additional 

information about clusters: 

 

DB SCAN (Set of Points, Eps, MinPts) 

// Set of Points is UNCLASSIFIED 

Clustered: =   next Id (NOISE); 
FOR i FROM 1 TO Set of Points .size DO 

Point =   Set Of Points. Get (i); 

IF Point. Cl Id = UNCLASSIFIED THEN 

   IF Expand Cluster (Set Of Points, Point, 

      Cluster Id, Eps, MinPts) THEN 

      Cluster Id = next Id (Cluster Id) 

    END IF 

 END IF 

END FOR 

END; // DBSCAN 

 

The function Set_Of_Points.get (i) returns the i-th element 
of Set_Of_Points and most important function used by DB 

SCAN is Expand Cluster Point in Set_Of_Points as a list of 

points. Region queries can be supported efficiently by spatial 

access methods such as R*-trees. Which are assumed to be 

available in a SDBS for efficient processing of several types 

of spatial queries. The height of an R*-tree is O (log n) for a 

database of n points in the worst case and a query with a 

“small” query region has to traverse only a limited number 

of paths in the R*-tree. Since the Eps- Neighborhoods are 

expected to be small compared to the size of the whole data 

space complexity and average run time complexity of a sin-

gle region query as O (log n) is defined for each of the n 

points of the data, we had at most one region query and Thus 

average run time complexity of DB SCAN is as O (n* log 

n). The cluster Id of points which have been marked to be 

NOISE may be changed later, when they are density-

reachable from some other point of the data and This hap-

pens for border points of a cluster and these points are not 

added to the seeds-list because we already know that a point 

with a Cl Id of NOISE is not a core point and by Adding 
those points to seeds would only result in additional region 

queries which would yield no generated answers. when two 

clusters C1 and C2 are very close to each other, it may oc-

curs that some point p belongs to both C1 and C2 and then p 

must be a border point in both clusters because otherwise C1 

would be equal to C2 since we use global constants, In this 

case, point p will be assigned to the cluster discovered ini-

tially and excluding from these rare situations, the result of 

DB SCAN is Independent of the order in which the points of 

the database are visited due to Lemma 2. The basic approach 

of how to determine the parameters Eps and MinPts is to 

look at the behavior of the distance from a point to its kth 
nearest neighbor and which is called k-dist and these k-

distance are computed for all the data points for some num-

ber of k, points sorted in ascending order and then plotted 

using the sorted values as a result leads to a sharp change is 

expected to see. The sharp change at the value of k dist cor-

responds to a suitable value. Note that the value of Eps that 

is determined in this way depends on k, but does not change 

dramatically as k changes. Because DB SCAN uses a densi-

ty-based definition of a cluster and it is relatively resistant to 

noise and can handle clusters of different shapes and sizes. 

Thus, DB SCAN can find many clusters that could not be 
found using some other clustering algorithms  like K-means, 

always the main weakness of DB SCAN is that it has trouble 

when the clusters have greatly density varies to sweep over 

the limitations of DB SCAN. Firstly DB SCAN calculates 

and stores k-dist for each project & partition k-Dist plots. 

Secondly the number of densities is given intuitively by k-

dist plot. Thirdly, choose parameters automatically for each 

density. 

 

Incremental Algorithm 
  

Incremental algorithms are radically different from static 

methods for the way they build and use Recommendation 

models. While static algorithms need an off-line pre-

processing phase to build the model from scratch every time 

an update of the knowledge base is needed, incremental al-

gorithms consist of a single online module integrating the 

two functionalities: 

i) Updating the model. 

ii) Providing suggestions for each query. 
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The two incremental algorithms differ from their static 

counterparts by the way in which they use data and manage 

to build the model. Both algorithms exploit LRU caches and 

Hash tables to store and retrieve efficiently queries and links 

during the model update. Our two incremental algorithms 

are inspired by the Data Stream Model in which streams of 

queries are processed by database system. Queries consists 

modification of values associated with a set of data. An algo-

rithm in the data stream model must decide at each time step 

which subset of the set of data is worthwhile to maintain in 

memory. The goal is to attain an approximation of the results 
we would have had in the case of the non- streaming model. 

Make a first step towards a data stream model algorithmic 

framework aimed at building query recommendations. The 

first uses association rules while the second exploits click- 

through data. Below Fig.1 explains entire work of this paper. 

User first enters the query for getting efficient results. The 

search engine compares the entered query with existing que-

ry log.  

If it is existed in the query log, the search engine applies 

incremental algorithm for that entry and provides results to 

user. The incremental algorithm includes I Association rule 

and I Cover graph. 
 

 
 

Figure 1. Architectural Daigram 

 

Conclusion 
 
 In this paper we enhanced the mechanism of organizing 

the user search histories by providing the improved dbscan 

algorithm it removes the unnecessary data points. It is varia-

ble length and we need not to specify the number of clusters 

prior clustering. In this improved dbscan algorithm density 

factor is depends on k-dist plot. Here that generates the op-

timal clusters.  

We propose a novel reformulation framework that trans-

forms the original query into a distribution of reformulated 

queries where each reformulated query is associated with a 

probability indicating for retrieval. The query distribution 

model considers a reformulated query as the basic unit thus 

explicitly modeling how query concepts are used together to 

form a realistic or actual query. The first two aspects can be 

efficiently implemented when large scale query logs are 

available. We can limit the reformulated queries to those 

appearing in query logs. In this way instead of generating 

queries we can simply search the query logs, which can be 
efficiently implemented using the index. Also, which speed 

up the query feature extraction for the retrieval aspect, in-

stead of running multiple reformulated queries, we reuse the 

retrieval scores of the words and phrases shared by these 

queries. 
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