
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

14

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

USER SPECIFIC SEARCH HISTORIES AND ORGANIZ-

ING PROBLEMS

M.Anusha*
1
 Dr.P.Niranjan*

2

M.Tech Department of Computer Science professor, Department of computer science,

Kakatiya Institute of Technology and Science, Kakatiya Institute of technology and science,
 Warangal Warangal

Dr. P.Shireesha *
3

Asst.professor, Department of Computer Science and Engineering,
Kakatiya Institute of Technology and Science

Warangal

Abstract

Creating search histories are a difficult process in the web.

The user search logs are rapidly increasing in the field of

data mining for finding the user interestingness. Present

days more number of queries can be passed to the server for

relevant information most of the search engines retrieves the

information based on the query similarity related links with
respect to the given query. This paper we stressed on the

concept explains the problem of organizing a user’s histori-

cal queries into groups in a dynamic and automated fashion.

In this paper we are proposing an efficient clustering mecha-

nism for group up the similar type of query that helps in or-

ganizing user search histories.

Introduction

 Search mechanism is the keyword explaining the way we

store and retrieve data at perfect appropriation and based on

the requirement. The relationships between the searched

and searching data the reformulated queries come into exist-

ence. We change this model to hierarchical query model

distribution. As of today the indexed web contains at least 30

billion pages. In fact the overall web may consist of over 1

trillion unique URLs more and more of which is being in-

dexed by search engines every day. Out of this users typical-

ly search for the relevant information that they want by pos-

ing search queries to search engines. The problem is that the
queries are very diverse and often quite vague and or ambig-

uous in terms of user basic inputs. Most of the individual

queries may refer to a single concept, while a single query

may correspond to several techniques. For organize and

bring some order to this massive unstructured dataset search

engines cluster these queries together to group similar items.

To increase usability, most commercial search engines and

also augments their search facility through additional ser-

vices such as query recommendation or query suggestion.

These services make it more convenient for users to issue

queries and obtain accurate results from the web search en-

gine, and thus it is quite valuable. From the search engine

view efficient group of search queries is a necessary pre req-

uisite for these services to function well. As the size and

richness of information increases on web because does the

variety and the complexity of tasks the users try to complete

online. End users are no longer content with issuing simple

navigational queries. The remaining is informational or

transactional. Since users now pursue much broader infor-

mational and task oriented goals such as arranging for travel
of future, managing their finances or planning their purchase

plans. However the primary means of accessing information

online is still through keyword queries to a web search en-

gine. Each step requires one or more queries, and each query

results clicks on relevant pages. The K-means algorithm is

one of the most frequently used investigatory algorithms in

data analysis. The proposed approach of algorithm finds to

locate K models or averages throughout a data set in such a

way that the K prototypes in some way best represents the

data. However the algorithm is known to suffer from the

defect that the means or prototypes found depend on the
initial values given to them at the start of the simulation: a

typical program will converge to a local optimum. There are

a number of heuristics in the literature which attempt to ad-

dress this issue but the fault lies in the performance function

on which K-means is based. In this paper we are introduc-

ing an enhanced dbscan algorithm for organizing the user

search histories.

Related Work

In order to make the things proper, we need to explore

things which make us to explore. In this paper we explore

and evaluate strategies for how to automatically generate for

learning retrieval of functions from observed user behavior

on the approach of used data or clicked data. The concept of

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

15

USER SPECIFIC SEARCH HISTORIES AND ORGANIZING PROBLEMS

query similarity was originally used in information retrieval

studies: measuring the similarity between the content-based

keywords of two queries. However the problem with using

this in the query log environment is that users’ search inter-

ests are not always the same even if the issued queries con-

tain the same keywords. For instance, the keyword Apple

may represent a popular kind of fruit whereas it is also the

keyword of a popular company “Apple Inc.”. Subsequently

to measure similarity between two queries, the query repre-

sentation of a vector of URLs in a click through bipartite

graph has been adopted. No matter how large the query log
data set it is possible that the complete search intent of some

queries may not be adequately represented by the available

click-through information. In a large scale query log, there

may be no clicked URL for the query Honda vs. Toyota. But

there is no relevant to the query Honda on the basis of this

click through data there is no similarity. Therefore existing

query log data is not accurate enough for analyzing users’

search intent especially for those queries without clicked any

URL.

Using Query Keywords

The first group of related clustering approaches is certain-

ly those that cluster documents using the keywords it. In
proposed approaches in general a document is represented as

a vector in a vector space generated by the keywords. Acad-

emicians have been concerned mostly with the following

two aspects:

a) Similarity function.

b) Algorithms for the clustering process.

Keyword based document clustering has provided interest-

ing results. One contributing factor is the large number of

keywords contained in documents. Even if some of the key-

words of two similar documents are different, there are still

many others that can make the documents similar in the sim-
ilarity calculation. However because, specifically the que-

ries submitted to the web search engines usually are very

short in many cases it is hard to deduce the semantics from

the query itself. Therefore keyword alone does not provide a

reliable basis for clustering queries effectively. In addition,

words such as where and who are treated as stop words in

traditional IR methods. For questions however these words

encode important information about the user’s requirement

specifically in the new-generation web search engines such

as Ask Jeeves. Considering an example whose input parame-

ter is the user intends to find information about a person. So
even if a keyword based approach is used in query cluster-

ing, it should be modified from that used in traditional clus-

tering document. The entire question is represented as a

template in accordance with the question type. During input

question evaluation, the input requirement template may be

elaborated using a morphological changes, in our proposed

case, we found that well-formed natural language input

questions represented only a small part of queries. Most

probable queries are simply short parts of phrases or key-

words.

Using Hyperlinks

Because of the limitations of keywords people have been

looking for additional criteria for document clustering or

grouping. One of them is the hyperlinks between groups of

documents. The hypothesis is related hyperlinks connect

similar documents. The proposed idea had been used in

some early studies in IR. More recent examples are Google

and the hub calculation of Kleinberg. Although Google does
not perform document clustering explicitly, its Page Rank

algorithm still results in a weighting of hyperlinks to a doc-

ument, it is then direct to know the documents that are the

most strongly related to it according to the weights of the

hyperlinks from the document. Google’s use of hyperlinks

has been mostly successful, organizing and making it one of

the best search engines currently available. The same idea is

difficult to apply to query clustering because there is no link

between Queries.

Proposed Work

To determine an appropriate clustering has to choose an

appropriate clustering algorithm. There are many clustering

algorithms available. The main characteristics that guide are

the following: As query logs usually are more, the algorithm

approach should be capable of handling a large data set

within reasonable time and space constraints. The algorithm

should not require manual setting of the resulting form of the

clusters for consideration number of maximal size of final
clusters. It is not reasonable to determine these Parameters in

advance. Because we only need to find frequently asked

questions, the proposed algorithm should filter out those

queries with low frequencies. Due to that reasons the log

data changes daily, the algorithm should be incremental. The

density-based clustering method DB SCAN and its incre-

mental version Incremental DB SCAN satisfy the above

requirements. Our proposed DB SCAN does not require the

number of clusters as an input parameters the cluster consists

of at least the min number of points—MinPts (to eliminate

very small clusters as noise); and for each point in the cluster

and there is another point in the same cluster whose distance
is less than the distance threshold Eps. This approach makes

use of a spatial indexing structure (R*-tree) to locate points

within the Eps distance from the core points of the clusters.

Total clusters consisting of less than the minimum number

of points are considered as “noise” and had been discarded.

Average time complexity of this DB SCAN algorithm is O

(n*logn). Previous experiments showed that DB SCAN out-

performs CLARANS by a factor of between 250 and 1900;

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

16

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

it increases with the size of the data set. Its ability of Incre-

mental DB SCAN to update incrementally is due to the den-

sity-based nature of the DB SCAN approach , which the

insertion or deletion of an object only affects the neighbor-

hood of this entity and based on the formal definition of

clusters, it has been proven that the incremental algorithm

yields the same results as DB SCAN. To find a cluster, DB

SCAN starts with an arbitrary point p and retrieves all points

density-reachable from p with respect to. Min distance (Eps)

and minimum number of points (Min Pts). If p is a core

point, it procedure produces a cluster. If p consider is a bor-
der point p and no points are density- reachable from p and

DB SCAN visits the next point of the database therefore use

global values for Eps and MinPts ,the algorithm DB SCAN

may merge two clusters according to definition 5 into single

cluster, if two clusters of different density are “close” to

each other. Let us consider the distance between two sets of

points S1 and S2 be defined as dist (S1, S2) = min {dist (p,q)

| p∈S1, q∈S2}. Then, two sets of points having at least the

density of the thinnest cluster will be separated from each

other only if the distance between the two sets is larger than

min scale distance and consequently. There is no disad-
vantage because the recursive application of DB SCAN

yields an elegant and very efficient basic approach. Further-

more and recursive clustering of the points of a cluster is

only necessary under conditions that can be easily detected

and the following, we present a basic version of DB SCAN

omitting details of data types and generation of additional

information about clusters:

DB SCAN (Set of Points, Eps, MinPts)

// Set of Points is UNCLASSIFIED

Clustered: = next Id (NOISE);
FOR i FROM 1 TO Set of Points .size DO

Point = Set Of Points. Get (i);

IF Point. Cl Id = UNCLASSIFIED THEN

 IF Expand Cluster (Set Of Points, Point,

 Cluster Id, Eps, MinPts) THEN

 Cluster Id = next Id (Cluster Id)

 END IF

 END IF

END FOR

END; // DBSCAN

The function Set_Of_Points.get (i) returns the i-th element
of Set_Of_Points and most important function used by DB

SCAN is Expand Cluster Point in Set_Of_Points as a list of

points. Region queries can be supported efficiently by spatial

access methods such as R*-trees. Which are assumed to be

available in a SDBS for efficient processing of several types

of spatial queries. The height of an R*-tree is O (log n) for a

database of n points in the worst case and a query with a

“small” query region has to traverse only a limited number

of paths in the R*-tree. Since the Eps- Neighborhoods are

expected to be small compared to the size of the whole data

space complexity and average run time complexity of a sin-

gle region query as O (log n) is defined for each of the n

points of the data, we had at most one region query and Thus

average run time complexity of DB SCAN is as O (n* log

n). The cluster Id of points which have been marked to be

NOISE may be changed later, when they are density-

reachable from some other point of the data and This hap-

pens for border points of a cluster and these points are not

added to the seeds-list because we already know that a point

with a Cl Id of NOISE is not a core point and by Adding
those points to seeds would only result in additional region

queries which would yield no generated answers. when two

clusters C1 and C2 are very close to each other, it may oc-

curs that some point p belongs to both C1 and C2 and then p

must be a border point in both clusters because otherwise C1

would be equal to C2 since we use global constants, In this

case, point p will be assigned to the cluster discovered ini-

tially and excluding from these rare situations, the result of

DB SCAN is Independent of the order in which the points of

the database are visited due to Lemma 2. The basic approach

of how to determine the parameters Eps and MinPts is to

look at the behavior of the distance from a point to its kth
nearest neighbor and which is called k-dist and these k-

distance are computed for all the data points for some num-

ber of k, points sorted in ascending order and then plotted

using the sorted values as a result leads to a sharp change is

expected to see. The sharp change at the value of k dist cor-

responds to a suitable value. Note that the value of Eps that

is determined in this way depends on k, but does not change

dramatically as k changes. Because DB SCAN uses a densi-

ty-based definition of a cluster and it is relatively resistant to

noise and can handle clusters of different shapes and sizes.

Thus, DB SCAN can find many clusters that could not be
found using some other clustering algorithms like K-means,

always the main weakness of DB SCAN is that it has trouble

when the clusters have greatly density varies to sweep over

the limitations of DB SCAN. Firstly DB SCAN calculates

and stores k-dist for each project & partition k-Dist plots.

Secondly the number of densities is given intuitively by k-

dist plot. Thirdly, choose parameters automatically for each

density.

Incremental Algorithm

Incremental algorithms are radically different from static

methods for the way they build and use Recommendation

models. While static algorithms need an off-line pre-

processing phase to build the model from scratch every time

an update of the knowledge base is needed, incremental al-

gorithms consist of a single online module integrating the

two functionalities:

i) Updating the model.

ii) Providing suggestions for each query.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

17

USER SPECIFIC SEARCH HISTORIES AND ORGANIZING PROBLEMS

The two incremental algorithms differ from their static

counterparts by the way in which they use data and manage

to build the model. Both algorithms exploit LRU caches and

Hash tables to store and retrieve efficiently queries and links

during the model update. Our two incremental algorithms

are inspired by the Data Stream Model in which streams of

queries are processed by database system. Queries consists

modification of values associated with a set of data. An algo-

rithm in the data stream model must decide at each time step

which subset of the set of data is worthwhile to maintain in

memory. The goal is to attain an approximation of the results
we would have had in the case of the non- streaming model.

Make a first step towards a data stream model algorithmic

framework aimed at building query recommendations. The

first uses association rules while the second exploits click-

through data. Below Fig.1 explains entire work of this paper.

User first enters the query for getting efficient results. The

search engine compares the entered query with existing que-

ry log.

If it is existed in the query log, the search engine applies

incremental algorithm for that entry and provides results to

user. The incremental algorithm includes I Association rule

and I Cover graph.

Figure 1. Architectural Daigram

Conclusion

 In this paper we enhanced the mechanism of organizing

the user search histories by providing the improved dbscan

algorithm it removes the unnecessary data points. It is varia-

ble length and we need not to specify the number of clusters

prior clustering. In this improved dbscan algorithm density

factor is depends on k-dist plot. Here that generates the op-

timal clusters.

We propose a novel reformulation framework that trans-

forms the original query into a distribution of reformulated

queries where each reformulated query is associated with a

probability indicating for retrieval. The query distribution

model considers a reformulated query as the basic unit thus

explicitly modeling how query concepts are used together to

form a realistic or actual query. The first two aspects can be

efficiently implemented when large scale query logs are

available. We can limit the reformulated queries to those

appearing in query logs. In this way instead of generating

queries we can simply search the query logs, which can be
efficiently implemented using the index. Also, which speed

up the query feature extraction for the retrieval aspect, in-

stead of running multiple reformulated queries, we reuse the

retrieval scores of the words and phrases shared by these

queries.

References

[1] Goldberg, J., Stimson, M., Lowenstein, M., Scott, M.,
and Wichansky, A. 2002. Eye tracking in web search

tasks: design implications. In Proceedings of the Eye

tracking Research and Applications Symposium

(ETRA).

[2] G. Salton and M. J. McGill, Introduction to Modern

Information Retrieval. New York, NY, USA:

McGraw-Hill, Inc., 1986.

[3] D. Beeferman and A. L. Berger, “Agglomerative clus-

tering of a search engine query log,” in KDD, pp.

407– 416, 2000.

[4] J.-R. Wen J.Y. Nie, and H. Zhang, “Query clustering
using user logs,” ACM Trans. Inf. Syst., vol. 20, no.

1, pp. 59–81, 2002.

[5] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and

H. Li, “Context-aware query suggestion by mining

click- through and session data,” in KDD, pp. 875–

883, ACM,N 2008.

[6] T. Joachim, “Optimizing search engines using click

through data,” in KDD, pp. 133–142, ACM, 2002.

[7] E. Agichtein, E Brill, and S. T.Dumais, “Improving

web search ranking by incorporating user behavior in-

formation,” in SIGIR, pp. 19–26, 2006.

[8] U. Irmak, V. von Brzeski, and R. Kraft, “Contextual
ranking of keywords using click data,” in ICDE, pp.

457– 468, 2009.

[9] F. Radlinski and T. Joachim, “Query chains: learning

to rank from implicit feedback,” in KDD, pp. 239–

248, 2005.

[10] T. Joachim, L. A. Granka, B. Pan, H. Hembrooke, F.

Radlinski, and G. Gay, “Evaluating the accuracy of

implicit feedback from clicks and query reformula-

tions in web search,” ACM Trans. Inf. Syst., vol. 25,

no. 2, 2007.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

18

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 6,

Biographies

 M. ANUSHA is currently pursuing her M.Tech. Comput-

er Science & Engineering in Kakatiya Institute of Technolo-

gy and Science, Warangal. She received her B.Tech in

Computer Science and Engineering from Balaji Institute of

Technology and Science, Narsampet, Warangal. Her area of

interests includes Data mining and Software Engineering.

 DR. NIRANJAN POLALA is working as Professor and

HOD of CSE in KITS, Warangal. He received Ph.D in CSE

from Kakatiya University, Warangal in the year 2013. He

received M.Tech (Computer Science and Engineering) from

NIT, Warangal in the year 2001 and B.E Computer Science

from Nagpur University in 1992. He authored three text

books in the field of computer science. He published 30 re-

search papers in various International Journals and Confer-

ences. He is a member of the ISTE and CSI. His area of in-

terests includes Software Engineering.

 DR. SHIREESHA PAKALA is working as Assistant

Professor in Department of CSE, KITS, Warangal. She re-

ceived Ph.D in Computer Science from Kakatiya University,

Warangal in the year 2012. She received M.Sc. Computer

Science from Kakatiya University in 2001. She published 8

research papers in various International Journals and Interna-

tional Conference. She is the member of the ISTE and IETE.

Her area of interests includes Data mining and Software

Engineering.

