
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

35

LOOP-FREE DISTANCE VECTOR ROUTING TO AVOID COUNT-TO-INFINITY

LOOP-FREE DISTANCE VECTOR ROUTING TO AVOID

COUNT-TO-INFINITY

Santanu Kr. Sen, Professor; Debraj Roy, Assistant Professor; Shirsankar Basu, Assistant Professor; Poojarini Mitra, Assistant Professor

Abstract

The proposed Loop-free Distance Vector Routing

(LFDVR) is a distributed dynamic routing, derived from the

famous Bellman Ford’s Distance Vector Routing Algorithm

(BFDVRA) which is widely used in the Internet and private

intranets. Several routing protocols based on distance-vector
algorithms have been proposed like Routing Information

Protocol (RIP), Gateway-to-Gateway Protocol (GGP) and

Exterior Gateway Protocol (EGP). Though simple and con-

ceptually elegant, the primary disadvantages of all these

algorithms are routing loops, slow convergence and the well-

known Count-To-Infinity problem (CTIP). The solutions

already proposed to overcome these problems like Split

Horizon or Split Horizon with Poisoned Reverse are ad-hoc

in nature and often fail. We have, in this paper, proposed an

Loop-free Distance Vector Routing (LFDVR) protocol that

avoids routing loops, totally solves the count-to-infinity
problem and may use any type of metric including link de-

lay. Avoidance of the routing loops and count-to-infinity

problem by the LFDVR has been investigated, simulated and

illustrated with two examples.

Introduction

The major function of the network layer is routing packets

from the source machine to the destination machine through
a communication subnet using mostly multiple hops (the

term hop, router or node is used interchangeably) choosing

the best route either statically (pre-defined or pre-computed)

or dynamically (based on current best decision!) where the

routing cost is measured in terms of hop-count, distance,

bandwidth, mean queuing delay or any other suitable metric

[2]. Two fundamental and most common types of adaptive

(dynamic) and distributed routing algorithms used are

BFDVRA and Link State Routing algorithm (LSRA). Both

are widely used in various forms in the Internet, intranets

and isolated non-broadcast type networks. Where IGP uses
RIP (RIP or RIP2) [5] [6], HELLO and OSPF for Intra-AS

routing, EGP mostly uses BGP for Inter-AS routing. Again,

RIP, HELLO and BGP are derived from BFDVRA whereas

OSPF, IS-IS routing protocols are actually derived from

LSRA [8]. Thus, BFDVRA plays a vital role both in IGP as

well as in EGP - the two most wildly used routing protocols.

In BFDVRA, a router knows the distance of the shortest

path (which may or may not be the best path! Section 2),

from each of its neighbours to reach to every network desti-

nation and used this information to compute the shortest path

and next-hop of the path to each destination. A router sends

update messages to all its neighbours, who in turn, process

the messages and sends messages of their own if needed.

Each update message contains a vector of one or more en-

tries, each of which specifies, as a minimum, the distance to

a given destination [7] [8]
Both the BFDVRA and LSRA has the disadvantage of

routing loops, may be temporarily, which is a detriment to

the overall performance of an internet. The BFDVRA is

conceptually elegant because of its simplicity of operation

and probably low overhead in terms of memory and pro-

cessing compared to LSRA. In case of LSRA, each partici-

pating router requires to have the complete network topolo-

gy information to compute the shortest path to each network

destination which may constitute excessive storage and

communication overhead on account of flooding, in a large,

dynamic network. LSRA supercedes BFDVRA in terms of
quicker convergence over a link failure or a topological

change However; the primary disadvantages of BFDVRA

are routing-table loops, slow convergence and the well-

known CTIP. In case of an increased link-cost or specifical-

ly, failure of a link, the BFDVRA converges slowly and

sometimes may not even converge to a stable state at all.

This second phenomenon of excessive slow convergence or

no convergence is popularly known as CTIP [2] [3] [4] [9].

A number of ad hoc solutions have been made to solve the

CTIP by increasing the amount of information exchanged

among the nodes, or by making nodes to hold down the up-

dating of their routing tables for some period of time after
detecting distance increases or the failure of a link, but none

really solves the problem satisfactorily [2] [3] [7] [9].

Keeping in mind, the popularity and elegancy of

BFDVRA, we propose in this paper, a solution to overcome

the two major problems of BFDVRA viz. routing-loops and

CTIP. The proposed LFDVR totally avoids the CTIP and the

routing-loops. The proposed protocol is also free to choose

any kind of metric rather than very commonly used metric

like distance or hop-count. The proposed model thus guaran-

tees to converge within a finite time without creating any

loop and thus totally avoiding the well-known CTIP.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

36

 INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

II. Best Path vs. Shortest Path

In this new loop free routing protocol, we use the term

“best path” in lieu of “shortest path” considering the im-
portance of the term and its practical utility in choosing the

best route from source to destination. From the practical

point of view, a shortest path may not be the cheapest path

and hence may not the best path. The term shortest path

basically refers to the path which is geographically shortest

in terms of distance, [2][9] whereas, if the cost metric of a

link is considered as delay, bandwidth, or something else

other that distance, then the term best path seems to be more

appropriate and suitable than the term shortest path. It is to

be noted that it may happen that the geographical distance

between a source and a destination might be same through

one route where the cost metric, say delay is more than the
other.

In another perspective, if the cost metric of a link between

two nodes is computed using more than one factors say

queuing delay, distance, hop-count and/or bandwidth, in this

case again best path is more fit than the term shortest path.

The term “shortest path” used by Djikstra in his famous

Shortest Path algorithm did use “distance” as the cost metric

and hence the widespread of the term. But now-a-days

where the whole world is flooded with networks, routers

etc., use of other type of metric is equally important to com-

pute best path and that is the reason of replacing the term
shortest path by the term best path. However, we still depend

on the technique of Djikstra shortest path algorithm to com-

pute the best path.

III. Network Model and Notation

Throughout this paper, the following notations are used:

G: A connected network of arbitrary topology

E: The set of links in G
N: The set of nodes in G

i: The identifier of destination node i Є N

j: The identifier of current node j Є N

k: The identifier of neighbour node of j; k Є K

K: {set of all neighbours of j}; K Є N

K/: {set of neighbours of j except i} K/ Є N

Ki : {set of neighbours of j that reaches to i via j}

Kj : {set of neighbours of j that reaches to i not via j}

V: {set of all valid neighbours (VN)} = VNL

v: A VN ;v Є N ; vDQNL ;v ≠ jR
Cjk: The current cost from node j to neighbour node k

Cji/k: The cost from node j to node i via neighbour k

jQ: A Requester node of j
jR : A Replier node of j

ERL: {VNL1 U VNL2 U VNL3 U…….VNLn)

VNL: {set of all Valid Neighbours (VN)}

VN: A Valid Neighbour (VN) is a neighbour of j which is

not included in the DQNL sent by jQ to j to find an alterna-

tive path to reach to a destination node i and through which j

can propagate SeekHelp() message to find an alternative

path to reach to node i.

RQT : Request Table
DQNL: {set of all disqualified nodes including jR}. A

DQNL is a list of nodes none of which can be selected as the

next-hop for the current source node j to reach to destination

node i. The nodes enlisted in the DQNL are already visited

nodes in the current path browsing tree

ERL: is a set union of all valid nodes of j for different re-

quests arrived at j to reach to a particular destination i.

ER: is a neighbouring node of j to which j earlier sent

SeekHelp() request message to find an alternative route to

reach to i and presently expecting a reply from it.

IV. LFDVR Algorithm

Whenever there is a link failure or increase in link cost, ir-

respective of the type of metric the routing protocol do uses,

takes place between two neighbouring nodes say j (F1) and

F2 (i), then to converge the whole network to a stable state,

both F1 and F2 runs the LFDVR algorithm as briefly de-

scribed below. We assume only F1 here for the sake of sim-

plicity.
Step 1: Cij is set to -9 so that if any other node tries to

know the cost between i and j, a reply of -9 will make the

requested node to assume that j and i are not in stable state

and is under repair.

Step 2: Node j tries to get help from all its neighbours K/

(Ki+Kj) except i to reach to i by sending a SeekHelp() re-

quest message to all of them ignoring whether a neighbour k

is currently reaching to i via j or not, in an intuition that alt-

hough k currently reaches to i via j depending on the best

path algorithm but it doesn’t waive out the possibility of an

alternative path from k to i not via j with same or higher

cost.
Sending SeekHelp() message to all K/ neighbours, node j

waits till it gets SeekHelpReply() from all of them.

Each SeekHelp() request message contains a DisQualified

Node List (DQNL) and hence a neighbour node of j which is

already visited and thereby included in the DQNL, is not

required to be scanned again.

Step 3: When a node Receives the SeekHelp() message:

Getting the SeekHelp() message by j from a neighbouring

node, the current node j performs the following steps in an

objective to search for an alternative path for its requester

node jR to reach to the destination node i.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

37

LOOP-FREE DISTANCE VECTOR ROUTING TO AVOID COUNT-TO-INFINITY

First of all, j checks the entries in the ReQuest Table

(RQT) to find if the same requester has already requested for

the same destination. If found, j does not forward the request

further to its VNs (Valid Neighbour) and just keep silence

doing nothing. This “silence concept” is introduced to re-

duce the redundancy for the same type of requests and

thereby saving the network bandwidth.
But if the request is a fresh one, i.e. no such already exist-

ing entry is found in the RQT table of j, node j first creates a

Valid Neighbour List (VNL).

If length(VNL) = 0, which indicates that there is not a

single valid neighbour do exist for node j through which j

can take help and therefore, node j responds with a negative

reply SeekHelpReply(-1) without keeping all its requesters

more in wait.

But If length(VNL) > 0; which indicates that there is at

least one VN of j, node j checks if v == i; v Є V i.e., if
any of its VN is equal to destination node i, j immediately

terminates its processing and further propagation of

SeekHelp() request message through its other VNs and con-

cludes that it has found and alternative route (may not be the

best route for the requester but best for j) to reach to desired

destination node i.

j computes the cost Cji which is directly obtained from the

weight matrix of node j and updates its own Routing Table
(RT) by updating both cost to reach to i and the next-hop

information.

j now sends SeekHelpReply (Cji) message to all its Re-

questers giving j’s least cost i.e. Cji to reach to i.

On the other hand, if none of the valid neighbours of j is i,

j first includes itself in the DQNL and propagates

SeekHelp() message to all its VNs seeking help to reach to

destination node i and waits till it gets SeekHelpReply()

from all of them.

Step 4: When a node receives the SeekHelpReply() mes-

sage: When a node j receives the SeekHelpReply() message
from any of its neighbours, node j then checks if the current

Replier (jR) who is of course a neighbour of j and also a

member of Expected Replier List (ERL). This check is in-

cluded to avoid any malicious or unwanted reply from any

neighbouring node.

However, if the replier is not found in the ERL, derived

from the RQT of j, j does not take any action by simply ig-

noring the reply.

In case the replier is an ER (Expected Replier) which indi-

cates that the replier is a valid replier, node j first checks the

message value. If the message value of SeekHelpReply()

message is a negative value i.e. -1, it indicates that there is
no path at all through this replier node jR to reach to i. Node

j then waits till it receives replies from all the other ERs. But

if the message value of SeekHelpReply() message is a non-

negative value, node j understands that there is a path to

reach to i.

Node j however, comes to a decision only after it receives

replies from all its valid repliers.

If all the replies arrived to j each with a negative feedback

i.e. -1, it clearly indicates that there is no path at all to reach

to destination node i through any neighbour of j and thereby
j concludes that it can provide no help to its requesters to

reach to i and hence j again replies all its requesters with a

negative reply SeekHelpReply (-1).

When a node j receives SeekHelpReply() message from its

Expected Repliers, and j has no RQT of its own, it indicates

that j is the Original Requester i.e. F1 (in this case). Now, if

all the replies received by j (F1) are -1, it indicates with

100% guarantee that there is no route at all to reach to desti-

nation node i (F2, in this case) and j concludes that the link

between j (F1) and i (F2) is no more and totally unreachable

since there is no alternative path to establish link between

the two. Node j then updates its own RT and sends this up-
dated message to all its neighbours using general Bellman

Ford’s BFDVRA to take the whole network to a stable state

and totally avoiding CTIP.

After j receives replies from all its ERs with a mixture of

message values i.e. -1 and/or positive cost values, j ignores

all -1 values and finds out the cheapest one comparing only

among the positive values. j then computes the required cost

to reach to i by adding the link cost Cjk with the Cki and

updates it own RT and then sends the SeekHelpReply(Cji) to

all its neighbours telling its cost to reach to destination node

i.
It is to be noted that the RQT of a node j is deleted either

after all replies have arrived from all ERs or after a certain

predefined time (TTL).

Thus, this algorithm not only finds out an alternative path to

reach to destination (if any), but also the path found out is

the cheapest one. On the other hand, since there is no chance

of routing loops, thereby omitting the occurrence of CTIP.

V. Examples

As shown in Fig 1(a) and 1(b), we have considered only

two most typical examples out of many. The link failures are

shown by cross marks.

In example 1and 2, CTIP takes place using ordinary

BFDVRA and hence do not converge at all. The more intel-

ligent routing protocols Split Horizon and Poison Reverse do

fail in case of network 2 [Fig. 1(b)] causing Count-To-

Infinity. But the proposed LFDVR algorithm does not fail at

all and all the networks do converge within a finite time after

the shown link failures. The proposed LFDVR algorithm

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

38

 INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

guarantees to converge within a finite time without creating

any routing-loops and without creating any CTIP.

Example 1:

In case of network 1(a)], after the link failure between router C

and D,

 Router ‘C’ sends request message SeekHelp() to all

itsVNs which is none but ‘B’ and waits till it gets replies

from all its neighbours i.e. ‘B’ in this case. ‘C’ does not cre-

ate any RQT since ‘C’ is the Original Requester, but creates

the DQNL including itself as the first member of the DQNL

list.

 Receiving the SeekHelp() message from ‘C’, node ‘B’

first of all creates a VNL and a RQT as shown in Table 1.1.

‘B’ finds that its only VN A is not the destination node ‘D’
and hence forward the SeekHelp() request message to ‘A’

including itself as a member in the DQNL.

TABLE 1.1: REQUEST TABLE (RQT) FOR NODE ‘B’:

Requester Destination VNL/

ERL

C D A

 Receiving the SeekHelp() message from ‘B’, node ‘A’

finds that it has no VN at all and therefore sends

SeekHelpReply(-1) with a negative value as shown, to its

requester i.e. to node ‘B’.

 Getting negative reply from ‘A’ which is an ER of ‘B’,

node ‘B’ simply forwards the SeekHelpReply(-1) with a

negative feedback to its requester ‘C’ since ‘B’ is having

one and only one ER and deletes the RQT.

 Similarly, while ‘C’ gets SeekHelpReply() from all its

ERs which is only node ‘B’, ‘C’ arrives to a firm decision
that there is no alternative path at all to reach to ‘D’ and ac-

cordingly updates its own RT and sends this updated infor-

mation to all it neighbours using ordinary BFDVRA algo-

rithm.

 Thus all nodes in the network update their corresponding

RTs and the whole network ultimately come to a stable state

within a finite period of time.

Example 2: Link Failure between node ‘C and node ‘D’:

 ‘C’ sends request message SeekHelp() to all its VNs (A,B)

and waits till it gets replies from all of them. ‘C’ does not

create any RQT since ‘C’ is the original requester, but cre-

ates the DQNL including itself as the first member of the

DQNL list.

 DQNL={C}

 ‘A’ receives SeekHelp() from ‘C’: Node ‘A’ Receiving

the SeekHelp() message from ‘C’, node ‘A’ first of all cre-

ates a VNL and a RQT as shown Table 2.1. ‘A’ finds that its

only VN ‘B’ is not the destination node ‘D’ and hence for-

ward the SeekHelp() request message to ‘B’ including itself
as a member in the DQNL.

 DQNL={C, A}

TABLE2.1: REQUEST TABLE (RQT) FOR NODE ’A’:

Entry

no

Requester Destination VNL/

ERL

1 C D B

2 B D NULL

 ‘B’ receives SeekHelp() from ‘C’: Similarly, at the same

instant node ‘B’ also receives the SeekHelp() message from

‘C’. In the same fashion, node ‘B’ creates its own VNL and
a RQT as shown in Table 2.2. ‘B’ finds that its only VN ‘A’

is not the destination node ‘D’ and hence forward the

SeekHelp() request message to ‘A’ including itself as a

member in the DQNL.

 DQNL={C, B}

TABLE2.2: REQUEST TABLE (RQT) FOR NODE ‘B’:

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

39

LOOP-FREE DISTANCE VECTOR ROUTING TO AVOID COUNT-TO-INFINITY

Entry

no

Requester Destination VNL/

ERL

1 C D A

2 A D NULL

 ‘B’ receives SeekHelp() from ‘A’: Receiving the

SeekHelp() message from ‘A’, node ‘B’ adds the entry no. 2

in its existing RQT [Table 2.2] and tries to find VNs which
is NULL i.e length(VNL)=0. So, ‘B’ understands that there

is no path at all to reach to ‘D’ through itself and therefore

sends a negative SeekHelpReply(-1) to all the ER i.e ‘C’ and

‘A’ deleting the RQT.

 ‘A’ receives SeekHelp() from ‘B’: Similarly, while the

SeekHelp() message arrives to ‘A’, ‘A’ adds a new entry

entry no. 2 [Table 2.1] and sends back a negative reply

SeekHelpReply(-1) to all its ERs ‘B’ and ‘C’ in this case.

 ‘C’ receives SeekHelpReply() from ‘A’ and ‘B’: The neg-

ative reply thus propagated to ‘C’ from ‘A’ and ‘B’ and

thereby ‘C’ concludes that it has no path at all to reach to
destination node ‘D’ by any means since all its ERs have

sent negative replies. ‘C’ then updates its own RT and sends

this updated information to all it neighbours using ordinary

BFDVRA algorithm.

Thus all nodes in the network update their corresponding

RTs and the whole network ultimately arrives to a stable

state within a finite period of time.

VI. Conclusions

Functioning of the LFDVR algorithm has been simulated

with randomly generated failures of links in a large number

of randomly generated network graphs. Around one hundred

cases have been found where link failure between two

neighbouring nodes caused Count-To-Infinity using the al-

gorithms like ordinary BFDVRA, Split Horizon and Poison

Reverse. Use of RIP2 stopped after 16 iterations concluding

CTIP but the proposed routing protocol LFDVR has failed

nowhere.

The strength of metric-independency of LFDVR makes it
versatile to be used in intra-AS or inter-AS routing and the

trick of routing loops avoidance reduces the total number of

message flow throughout the whole network to attain a sta-

ble state after a link failure. The algorithm not only finds out

an alternative path to reach to destination (if any), but also

the path found out is the best or cheapest one. On the other

hand, since there is no chance of routing loops, thereby

omitting the occurrence of CTIP. The justification of using

“best path” in lieu of “shortest path” is also tried to be estab-

lished citing some exciting real-life scenarios.

The somewhat increased processing and communication

overhead in the LFDVR, is only a small price to be paid

when viewed against the backdrop of the vast performance

improvement.

Acknowledgments

 The authors are thankful to IJACT Journal for the support

to develop this document.

References

[1] D. Bertsekas and R. Gallager, Data Networks, 2nd

Ed., PHI-EEE, 1992

[2] A. S. Tenenbaum, Computer Networks, 4th Ed., Pear-

son Education Asea, LPE, 2003.

[3] J. F. Kurose and K. W. Ross, Computer Networking :

A Top-Down Approach Featuring the Internet, 2nd

Ed., Pearson Education Asea, LPE, 2003.

[4] L. L. Peterson and B. S. Davie, Computer Networks :
A systems Approach, 2nd Ed., Morgan Kaufman,

2000

[5] C. L. Hendrick, “Routing Information Protocol," RFC

1058, June 1988

[6] G. Malkin , “RIP Version 2- Carrying Additional In-

formation,” Xylogics, Inc., November 1994 , RFC

1723

[7] Albeto Leon-Garcia and Indra Widjaja, Communica-

tion Networks, Tata McGraw Hill, 2000

[8] Radia Perlman, Interconnections: Bridges and Rout-

ers, Addison Wesley, 1994.
[9] Tomomasa T, Morikawa A, Sandler RH, “Gastroin-

testinal Sounds and Migrating Motor Complex in

Fasted Humans,” Am J Gastroenterol, 1999, 94:374–

381.

[10] S. K. Ray, S. K. Paira, S. K. Sen, “Modified Distance

Vector Routing Avoids Count-To-Infinity Problem”,

Proc. International Conference CODIS 2004, held in

Calcutta during Jan 8-10, 2004, pp. 31-34

Biographies

 SANTANU KUMAR SEN, 25th Dec 1971, currently

working as Professor and Head in the Department of Com-

puter Science & Engineering in Gurunanak Institute of

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

40

 INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

Technology. He received his BE(CSE), M.Tech (CSE),

MBA (IS) and PhD(Engg.) from REC Silchar and Jadavpur

University respectively. He is a Fellow of IET(UK), IE(I),

IETE(I) and Sr. Member of IEEE (USA), CSI(I) and life

members of ISTE. His research interests mainly focused on

Mobile Ad Hoc Networks, Computer Networks, Sensor

Networks and Cloud Computing. Dr. Santanu Kumar Sen
(Professor Author) may be reached at

profsantanu.sen@gmail.com

DEBRAJ ROY, 24th November 1985, currently working

as Assistant Professor in the Department of Computer Sci-

ence & Engineering in Gurunanak Institute of Technology.

He received his B.Tech(CSE) from Jalpaiguri Govt. Engg.

College(affiliated to West Bengal University of Technology)

in 2009 and M.E(CSE) from Jadavpur University in 2011.

His research interests mainly focused on Computer Net-

works, Cloud Computing and Bioinformatics. Debraj Roy

may be reached at debraj.roy85@gmail.com

SHIRSANKAR BASU, 25th November’1987, currently

working as Assistant Professor in the department of Com-

puter Science and Engineering in Gurunanak Institute of

Technology. He received his B.Tech(C.S.E) in the year 2009

from Institute of Technology and Marine Engineering,

Joka(affiliated to West Bengal University of Technology)

and subsequently M.Tech(C.S.E) from Heritage Institute of

Technology in the year 2011(affiliated to West Bengal Uni-

versity of Technology). He also bagged one year of research

experience (2011 June – 2012 September) as a junior project
assistant in IIT Kharagpur in the department of computer

science. His primary research interests focus on Community

Detection in Social Network Graphs and wireless sensor

networks. Shirsankar Basu may be reached at

shirsankarbasu@gmail.com

POOJARINI MITRA, 26th February 1987, currently

working as an Assistant Professor in the Department of

Computer Science and Engineering in Guru Nanak Institute

of Technology. She received her B.Tech (CSE) from Calcut-

ta Institute of Engineering and Management, WBUT in 2010

and M.Tech (CSE) from University College of Science and
Technology, University of Calcutta in 2012. Her research

interests are mainly focused on Wireless Sensor Network,

Security on Computer Networks. Poojarini Mitra may be

reached at poojarini.mitra@gmail.com

