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Abstract: 

 In this paper we introduced the concepts of 

loops, Smarandache loops, Sub-loops, Smarandache sub-
loops, Normal loops, Smarandache normal loops, in 

section 1 we study structure of Moufang loops and Paige 

loops.  

 The necessary defini-tions and results are 

presented in the section 1.1 section 1.2 deals with the 

Paige loops and Moufang loops.  

1. PRELIMINARIES  

1.1 DEFINITION:  A non-empty set L is said of form a 

loop, if on L is defined a binary operation called the 

product denoted by ‘ ’ such that  

a. For all a, b   L we have a   b   L (closure 

property). 
b. There exists an element e   L such that a  e=e

 a=a for all a L (e is called the identity 

element of L). 

c. For every ordered pair (a,b)   L x L there exists 

a unique pair (x,y) in L such that ax = b and ya = 

b. 

Note: Throughout this chapter we take L to be a finite 

loop, unless otherwise we state it explicitly, L is an 

infinite loop. The binary operation ‘ ’ in general need 

not be associative on L. We also mention all groups are 

loops but in general every loop is not a group. Thus loops 
are the more generalized concept of groups.  

1.1a Example: Let (L, *) be a loop of order six given by 

the following table. This loop is a commutative loop but it 

is not associative.  

 

* e a1 a2 a3 a4 a5 

e e a1 a2 a3 a4 a5 

a1 a1 e a4 a2 a5 a3 

a2 a2 a4 e a5 a3 a1 

a3 a3 a2 a5 e a1 a4 

a4 a4 a5 a3 a1 e a2 

a5 a5 a3 a1 a4 a2 e 

Clearly (L, *) is non-associative as (a4 * a3) * a2 = a4 * (a3 

* a2) = a4 * a5 = a2.  
Thus (a4 * a3) * a2 a4 * (a3 * a2).  

1.2 DEFINITION:  A loop (L,  ) is said to be a 

commutative loop if for all a, b   L we have a   b = b   

a.  
The loops given in examples 3.2.2 and 3.2.4 are 

commutative loops. If in a loop (L,  ) we have at least a 

pair a, b  L such that a   b  b   a then we say (L,  ) 

is a non-commutative loop. 

The loop given in example 3.2.3 is non-

commutative.  

1.2a Example: Now consider the following loop (L,  ) 

given by the table:  

  e g1 g2 g3 g4 g5 

e e g1 g2 g3 g4 g5 

g1 g1 e g3 g5 g2 g4 

g2 g2 g5 e g4 g1 g3 

g3 g3 g4 g1 e g5 g2 

g4 g4 g3 g5 g2 e g1 

g5 g5 g2 g4 g1 g3 e 

We see a special quality of this loop viz. in this 

loop xy  yx for any x, y   L / {e} with x   y. 

1 2 3g g g  ,  2 1 5g g g    1 2 2 1g g g g     

4 2 5 2 4 1,g g g g g g    ,  

2 4 4 2g g g g     

 ,L   is non-commutative 

 1 2 3 3 3g g g g g e     , 

 1 2 3 1 4 2g g g g g g      

   1 2 3 1 2 3g g g g g g     non-associative  

 ,L   is neither commutative nor associative.   

1.3 DEFINITION: Let L be a loop. A non-empty subset 

H of L is called a subloop of L if H itself is a loop under 

the operation of L.  

1.3a Example:  Consider the loop L given in example 

3.2.4 we see  ,i iH e g for i = 1,2,3,4,5,6,7 are 

subloops of L.  

1.4 DEFINITION: Let L be a loop. A subloop H of L is 

said to be a normal subloop of L, if  

1. xH = Hx 
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2. (Hx)y = H(xy) 

3. y(xH) = (yx)H 

for all x, y L.  

1.5 DEFINITION: A loop L is said to be a simple loop if 

it does not contain and non-trivial normal subloop.  

1.5a Example: The loops given in example 3.2.2 and 

3.2.4 are simple loops for it is left for the reader to check 
that these loops do not contain normal subloops, in fact 

both of them constain subloops which are not normal.  

 1 3,H e a is a subloop 

 2 2,H e a  is a subloop but these are normal subloops 

1.6 DEFINITION: The commutator subloop of a loop L 

denoted by L’ is the sub loop generated by all of its 

commutators, that is, 

{ / ( , ) , }    x L x y z for some y z L  where for 

,A L A    denots the subloop generated by A. 

1.7 DEFINITION: If ,x y and z are elements of a loop 

L an associator ( , , )x y z  is defined by, 

( ) ( ( )) ( , , )xy z x yz x y z . 

1.8 DEFINITION: The associator subloop of a loop L 

(denoted by A(L)) is the subloop generated by all of its 

associators, that is { / ( , , )  x L x a b c  for some 

, , } a b c L . 

1.9 DEFINITION: A loop L is said to be semi alternative 

if ( , , ) ( , , )x y z y z x  for all , , ,x y z L where 

( , , )x y z  denotes the associator of elements , , .x y z L  

1.10 DEFINITION : Let L be a loop. The flexible law 

FLEX:   x yx xy x for all , .x y L  If a loop L 

satisfies left alternative laws that is   y yx yy x then 

RLALT. L satisfies right alternative laws RALT: 
.  x yy xy y  

1.11 DEFINITION : ARIF loop is an IP loop L with the 

property 
j   for all 1( ). Mlt L Equivalently, 

inner mappings preserve inverses that is 

   
11  
 x x for all 

1( ) .  Mlt L and for all x L  

1.12 DEFINITION: A map   for a loop L to another 

loop L1 is called a loop homomorphism if  

      , .   ab a b for all a b L  

1.13 DEFINITION : Let L be a loop L is said to be a 

strictly non-commutative loop if 

, ( , ,    xy yx for any x y L x y x e y e  where 

e is the identity element of L).  

1.14 DEFINITION: A loop L is said to be power-

associative in the sense tht every element of L generates 

an abelian group.  

1.15  DEFINITION: A loop L is diassociative loop if 

every pair of elements of L generates a subgroup.  

1.15a Example: Let L be a loop given by the following 

table:  

  e a1 a2 a3 a4 a5 

e e a1 a2 a3 a4 a5 

a1 a1 e a3 a5 a2 a4 

a2 a2 a5 e a4 a1 a3 

a3 a3 a4 a1 e a5 a2 

a4 a4 a3 a5 a2 e a1 

a5 a5 a2 a4 a1 a3 e 

The nucleus of this loop is just {e}. The left 

nucleus of L, l N (L) = {e}. The Moufang centre of the 

loop L is C(L) = {e}. Thus for this L we see the center is 

just {e}. 

1.16 DEFINITION: A loop L is said to be a Moufang 
loop if it satisfies any one of the following identities:  

     

     

    

1.

2.

3.

, , .









xy zx x yz x

xy z y x y zy

x y xz xy x z

for all x y z L

 

1.17 DEFINITION: Let be a loop, L is called a Bruck 

loop if     x yx z x y xz  and 

 
1 1 1 , , .
   xy x y for all x y z L  

1.18 DEFINITION: A loop (L,  ) is called a Bol loop if 

     xy z y x yz y  for all , , .x y z L  

1.19 DEFINITION: A loop L is said to be right 

alternative if    xy y x yy  for all , x y L and L is 

left alternative if     , .xx y x xy for all x y L L  is 

said to be an alternative loop if it is both a right and left 

alternative loop.  

1.20 DEFINITION : A loop  ,L  is called a weak 

inverse property loop (WIP-loop) if 

    , , .xy z e imply x yz e for all x y z L    
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1.21 DEFINITION: A loop L is said to be semi 

alternative if    , , , ,x y z y z x  for all , , ,x y z L  

where  , ,x y z  denotes the associator of elements 

, , .x y z L  

1.22 DEFINITION: The Smarandache loop (S-loop) is 

defined to be a loop L such that a proper subset A of L is 

a subgroup (with respect to the same induced operation) 

that is A L   . 

1.22a THEOREM  The natural class of loops 

 n nL m L  (n odd, n > 3, (m, n) = 1, (m, -1, n) =1 for 

varying m ) are S-loops. 

Proof: We see by the very construction of loops  nL m   

in Ln each  ni L m  is such that i i e   where e is 

the identity element of  nL m . Thus all proper subsets 

of he form    , ne i L m for varying I are groups. 

Thus the class of loops Ln are S-loops. 
1.22b THEOREM : Let L be a Moufang loop which is 

centrally nilpotent of class 2. Then L is a S-loop. 

Proof:  We know if L is a Moufang loop which is 

centrally nilpotent of class 2, that is, a Moufang loop L 

such that the quotient of L by its centre Z(L) is an abelian 

group; and let Lp denote the set of all elements of L whose 

order is a power of p. That the nuclearly derived subloop, 

or normal associator subloop of L, which we denote by 
*L  is the smallest normal subloop of L such that L/L* is 

associatie (i.e. a group). Also that the torsion subloop 

(subloop of finite order elements) of L is isomorphic to 

the (restricted) direct product of the subloops Lp where p 

runs over all primes.   

1.23 DEFINITION :  Let L be a loop. A proper subset A 
of L is said to be a Smarandache subloop (S-subloop) of L 

if A is a subloop of L and A is itself a S-subloop; that is A 

contains a proper subset B contained in A such that B is a 

group under the operations of L. We demand A to be a S-

subloop which is not a subgroup.  

1.23a THEOREM: Let L be a loop. If L has a S-subloop 

then L is a S-loop.  

Proof: If a loop L has S-subloop then we have a subset 

A L  such that A is a subloop and contains a proper 

subset B such that B is a group. Hence  B A L so L 

is a S-loop. So a subloop can have a S-subloop only when 

L is a S-loop.  

1.23a Example: Consider the loop 0- is a subloop of the 

loop  15 2 .L  Clearly H is a S-subloop of L. But it is 

interesting to note that in general all S-loop need not have 

every subloop to be a S-subloop or more particularly a S-

loop need not have S-subloops at all    

1.24 DEFINITION:  Let L be a S-loop. If L has no 

subloops but only subgroups well call L a Smarandache 

subgroup (S-subgroup) loop.  

1.24a THEOREM: Let  n nL m L  where n is a 

prime. Then the class of loops Ln is a S-subgroup loop.  

Proof: Given n is a prime. So  n nL m L  has n + 1 

elements and further no number t divides n. By the very 

construction of   nL m  we see  nL m  is a S-loop 

every element generates a cyclic group of order 2. Thus 

we have a class of loops nL  which are S-subgroup loops 

for each prime n = p, n > 3.  

1.25 DEFINITION: Let L be a loop. We say a non-

empty subset A of L is a Smarandache normal subloop (S-

normal subloop) of L if 

1. A is itself a normal subloop of L.  

2. A contains a proper subset B where B is a 

subgroup under the operations of L. If L has no 

S-normal subloop we say the loop L is 

Smarandache simple (S-simple).  

1.25a THEOREM: Let L be a loop. If L has a S-normal 

subloop then L is a S-loop.  

Proof: Obvious by the Let L be a loop. We say a non-
empty subset A of L is a Smarandache normal subloop (S-

normal subloop) of L if 

1. A is itself a normal subloop of L.  

2. A contains a proper subset B where B is a 

subgroup under the operations of L. If L has no 

S-normal subloop we say the loop L is 

Smarandache simple (S-simple).  

of S-normal subloop we see L is a S-loop.  

Now we see that a loop may have normal subloops but yet 

that normal subloop may not be a S-normal subloop. 

1.25b THEOREM : Let L be a loop. If L has a S-normal 
subloop then L has a normal subloop, so L is not simple.  

Proof: We say a non-empty subset A of L is a 

Smarandache normal subloop (S-normal subloop) of L if 

1. A is itself a normal subloop of L.  

2. A contains a proper subset B where B is a 

subgroup under the operations of L. If L has no 

S-normal subloop we say the loop L is 

Smarandache simple (S-simple).  

 Of S-normal subloop in a loop L we are guaranted, that 

the loop L must have a normal subloop so L is not simple. 

Hence the claim.  

1.26 DEFINITION: Let L be a S-loops unlike in groups 
or loops remain at a very dormant state.  

1.27 DEFINITION :  Let L be a loop. L is said to be a 

Smarandache strongly commutative (S-strongly 

commutative) loop if every proper subset which is a 

group is a commutative group. 
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1.27a THEOREM: Let  n nL m L  be the class of S-

loops. The Smarandache lattice representation of S-

normal subloops of the loop  nL m  from a two element 

chain lattice.  

Proof: Every  n nL m L  has no S-normal subloops. 

So the only trivial S-normal subloops are e and  nL m  

giving the two element chain  

 

 

 

 
 

 

This can be compared with the normal subgroups in the 

alternating group , 5.nA n   

1.28 DEFINITION: For all a,b in L. A congruence 

relation in a loop L is an equivalence relation ~ such that  

,

.

ac bc c L
a b

ca cb c L

 
 

 
 

This notion is closer to the notion of congruence 

relation in groups than in Smarandache semigroups. 

Indeed, the following proposition shows that both are 

equivalent, contrary to the case of Smarandache 

semigroups where the notion of c-simplicity had to be 

created to capture the essence we were looking for.  
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