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Abstract  
 

It seems reasonable to assume that the highest perform-

ance from a computer node occurs when the basic operating 

system has been installed directly onto a ‘bare-metal’ ma-

chine. The idea of loading an operating system within an-

other supporting virtual machines, at best sounds convoluted 

and at worst, a likely drain on the overall performance of the 

resulting system. However, by comparing the performance 

of multicore processors in ‘virtual’ machine environments 

with those in ‘bare-metal’ machines the authors explore ar-

eas where virtual machines could well result in higher over-

all levels of efficiency within a cluster environment. 

 
Keywords: High performance computing HPC, parallel compu-

ting, cluster, virtual computing, contention, multicore proces-

sors. 

 

Introduction 
 

Since 2004, multicore processors have become the norm. 

This has come from the need to restrict clock speeds in order 

to prevent excessive power dissipation [1]. While symmetric 

multiprocessing (SMP) has been a phenomenal success in 

areas like laptops and workstations, this success has not 

translated itself evenly to areas like cluster computing where 

high performance and parallelism are necessary to achieve a 

significant impact. Their success in laptops and workstations 

is primarily in allowing multitasking of independent applica-

tions with core load balancing. This gives a richer fuller ex-

perience to the user rather than the ability to run any indi-

vidual program any faster. Using SMP to achieve perform-

ance and parallelism has resulted in contention within the 

multicores which has hampered their usefulness (see Figure 

1). The aim of this paper is to explore the performance of 

multicore processors in ‘virtual’ machines (VMs) compared 

with ‘bare-metal’ machines both in terms of how they deal 

with contention as well as their possible use within a cluster 

environment. 

 

Throughout this paper the authors use the term ‘bare-

metal’ to signify a computer system where the operating 

system has been installed directly onto a physical hard disk 

and would be the only operating system in use within the 

hardware computer box. Virtual Machines (VMs) are also 

operating systems but have been installed within the context 

of a normal operating system. Managed by a ‘hypervisor’, a 

computer box can be made to support multiple VMs all ap-

parently running independently (and concurrently) within 

their own space. 

 

Contention in multicore processors is something that has 

been the subject of many research papers [2-4]. Contention 

is generally associated with both bandwidth and memory 

resources. Bandwidth resource contention comes in the 

shared bus structure between the processor cores necessitat-

ing that the concerned cores arbitrate any resulting conges-

tion. This has the effect of delaying the requests for all but 

one application until the congestion is clear. Memory re-

sources can also give rise to congestion this time in shared 

memory resources (such as processor cache) where one core 

may alter a memory value currently being used by another 

core. This has the effect of slowing down the operation of 

one application at the expense of another. 

 

The authors have installed, commissioned and operated a 

cluster computer for a period of six years. The University of 

Sunderland Cluster Computer (USCC) is a small but none-

the-less powerful general purpose dual boot system that is 

able to run application programs within the Windows and 

Linux operating environments. The USCC compute nodes 

consist of some forty servers plus two headnodes (one used 

for Windows and the other used for Linux). Each node con-

tains twin dual core Intel Xeon 5150 processors fitted with 8 

GB of RAM. 

 

The program being used for all tests carried out in this pa-

per is the 32-bit Windows version of Gaussian_09.  This is a 

state-of-the-art modelling suite based on the work of Profes-

sor John Pople who was awarded the Nobel Prize in Chemis-
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try in 1998 for his work in this field [5]. Gaussian_09 is de-

signed to model a broad range of molecular systems under a 

variety of conditions. All computations performed start from 

the basic laws of quantum mechanics and can be used to 

build up a 3D view of the compound. It can also predict en-

ergies, molecular structures, vibrational frequencies and nu-

merous molecular properties for systems both in solution 

and the gas phase. 

 

In order to form a common comparison between results, 

the Gaussian’s command-line software using the same 

chemical compound (an azobiphenylboronate) was used 

throughout. This sample job was run directly on the machine 

in question storing the results locally to ensure no external 

network issues arose. In this way the authors were able to 

compare the results from both the existing cluster machines 

as well as from a new six (hex) core workstation. 

 

Gaussian_09 is not just a single program but a suite of 

modules, which Gaussian terms ‘links’, that are used to 

achieve its goals. The Gaussian website lists the function of 

each of these links [6]. During normal execution of a Gaus-

sian job, the same program code (i.e. the link) could be 

called several times from within the Gaussian job before the 

job is considered to be complete. This would suggest that the 

Gaussian_09 software is primarily sequential in its execution 

but makes as much use as it can of any declared hardware 

resources to utilise parallelism within each ‘link’ module. 

 

Gaussian publish their own assessment of hardware per-

formance for 1, 2, 4 and 8 core machines for the compound 

Alpha Pinene [7]. Throughout this study, Gaussian_09 has 

been set up to use the same numbers of cores in its calcula-

tions so that direct comparisons can be made between differ-

ent configurations. The results relate to the total time taken 

by the software within a node (or operating system instance), 

and have been ‘normalised’ and shown as a speed-up factor. 

The speed-up factor compares this measured time against 

that taken for Gaussian_09 software to complete a job using 

the same physical machine but with a single core processor. 

 

‘Bare-metal’ performance 
 

The hardware tests were run on two classes of machine.  

 

 Dell 2950 twin dual core server currently installed on 

the USCC. They consist of twin dual core Xeon 

5150 64 bit CPUs (four cores) running at 2.66 GHz 

with 8 GByte of installed RAM. This processor 

supports Intel Virtualisation Technology but not In-

tel Hyper Threading. 

 

 Viglen workstation utilising a single Intel Core i7 

3930K Sandy Bridge-E (Hex core) running at 3.2 

GHz with 32 GByte of installed RAM. This proces-

sor supports both Intel Virtualisation Technology as 

well as Intel Hyper Threading Technology. 

The results of these tests are set out in Table 1. 

 

Intel has two different technologies which merit some 

comment: 

 

1. Virtualisation Technology (VT) 

2. Hyper Threading Technology (HT) 

 

Virtualisation Technology in Intel terms is hardware support 

for the more commonly known software-based virtualisation 

solutions such as Microsoft Hyper-V, VMWare, IBM Zen, 

etc.  

 

Hyper Threading Technology is a feature that under certain 

conditions will allow two threads to run concurrently within 

the processor when calling two different CPU functions. 

This results in the operating system seeing twice as many 

processors (e.g. a four core processor would appear as eight 

processors – four real and four virtual). Intel claims that this 

can account for up to 30% performance enhancement but is 

dependent on the scheduling of tasks to the cores. Under 

certain conditions, HT can actually end up degrading the 

performance [8]. 

 
Table 1. Comparative times to execute the test job on different 

machines using various numbers of specified cores 

 

 Cores Time (secs) Speed-Up 

Dell 2950 

Server (Twin 

Dual Core) 

1 56470 1 

2 29158 1.9 

4 15612 3.6 

Viglen 

Workstation 

(Hex Core) 

1 29812 1 

2 15172 2 

4 6266 3.6 

Perfectly 

Linear 

1 

n/a 

1 

2 2 

4 4 

8 8 

Published 

Gaussian 

Results 

1 

n/a 

1 

2 1.9 

4 3.4 

8 4.3 

 

Note: All timings shown are an average of several ex-

perimental runs where the repeatability was found 

to be within a range of 1.5% of the average value. 

 



International Journal of Advanced Computer Technology (IJACT)        
ISSN:2319-7900 

27 

EVALUATING THE USE OF VIRTUAL MACHINES IN HIGH PERFORMANCE CLUSTERS 

 

The results as displayed in Figure 1 show a slightly better 

than predicted speed-up for both of the hardware machines 

compared to published Gaussian results. However, it has to 

be taken into account that the compound used in tests carried 

out by the authors is not the same as that used in the Gaus-

sian published results. It is unfortunate that we were unable 

to run the test job further than four processors. The authors 

believe that Gaussian_09 software checks the number of 

physical cores available and rejects any attempt to run a job 

with a higher number of specified cores.  

 

The Gaussian published results are interesting in that they 

show a marked drop in the expected speed-up as the number 

of cores increases (i.e. a speed-up of only 4.2 when using an 

eight core processor). The authors believe that this is due to 

resource contention issues in a multicore system based on 

virtualisation results discussed later in this paper. 

 

There is a fundamental difference in how the user executes 

applications on cluster compute nodes as compared to work-

stations and infrastructure servers such as DHCP, DNS, Da-

tabase and Web servers. Cluster compute nodes are gener-

ally run as close to their full processor utilisation as is physi-

cally possible for long periods of time (perhaps several 

weeks) to maximise the cluster performance and minimise 

job run times. Nodes are generally allocated a single  

 

 
 

software job to execute at any time (under control of the 

headnode) and are not expected to undertake any other task 

until this is complete. Workstations and infrastructure serv-

ers, on the other hand, have to remain vigilant to ensure that 

any requested task is dealt with without interruption to its 

current activities. This requires the processor to have suffi-

cient resources ‘in hand’ to deal with these requests as and 

when required. 

Although contention is an issue in workstations and infra-

structural servers, the effect on compute cluster nodes per-

formance is far more marked due to the desire to always 

operate at the maximum speed-up possible. 

 

 

‘Virtual Machine’ performance 
 

All virtual machine performance tests were carried out on 

a Viglen six (hex) core workstation. The base operating sys-

tem was Windows Server 2012 R2. Unlike the tests carried 

out for ‘bare-metal’ performance, a machine was setup ena-

bling Hyper-V services where a batch of machines could be 

installed and started separately. The same amount of RAM 

was specified for each machine (2 GBytes), only the allo-

cated number of processors was varied creating 1, 2, 4 and 8 

core virtual machines onto which further installations of 

Windows Server 2012 R2 were made. This general arrange-

ment is shown in Figure 2.  

 

 
 

An overall total of twelve VMs were created, however 

only those involved in the particular test were started for the 

test. This structural arrangement enabled the authors to run 

separate Gaussian_09 jobs in parallel on separate virtual 

machines each within their own program and memory space.  

 

Speed-up calculations take into account the overall time 

taken to complete a number of parallel jobs compared with 

that taken to run a job on a single core ‘bare-metal’ machine 

 

 
Figure 2 – Typical VM Arrangement 

 
Figure 1 – Hardware ‘Bare-Metal’ Performance 
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The results of these tests are set out in Table 2. 

 

The results displayed in Figure 3 show a completely dif-

ferent speed-up curve from that shown for the hardware only 

case. Having a six (hex) core processor allowed the creation 

of multiple VM configurations. The following were set up 

and tested as four separate configurations: 

 

1. Six VMs each consisting of one virtual processor 

2. Three VMs each consisting of two virtual processors 

3. Two VMs each consisting of four virtual processors 

4. One VM consisting of eight virtual processors 

 
Table 2. Comparative times to execute the test job on different 

virtual machines using various numbers of specified virtual 

cores 

 

No of VMs Cores/VM Time (secs) Speed-Up 

6 1 34616 5.2 

3 2 17445 5.1 

2 4* 11171 5.3 

1 8* 5852 5.1 

 

*  In both these cases, the total number of virtual cores 

exceeded the hardware cores within the processor.  

 

The hardware ‘bare-metal’ configuration allowed only one 

program instance to be executed or run at a time. This proc-

essor configuration creates a (theoretical) linear relationship 

between the system speedup and the number of cores avail-

able for processing. 

 

The authors have observed that for the virtual machines, 

the performance speedup remains almost constant for active 

processor cores in the range of up to eight virtual cores. The 

measured speed-up obtained using VMs over this range of 

cores was roughly constant (around 5.2). 

 

Due to the way Intel implement their multi-threading 

strategy, it was noted that this theoretical performance ap-

plies to twelve cores (six real and six virtual) whereas the 

theoretical speedup is only equal to the number of real cores. 

The shaded area shown in Figure 3 represents the overall 

loss of speed-up between the measured performance and the 

theoretical performance and represents the portion of proces-

sor activity necessary to implement the hypervisor. 

 

Discussion of Results 
 

Although the authors were not able to measure the speed-

up for ‘bare-metal’ machines having more than four cores, 

even at this number of cores, contention is already evident 

reducing the speed-up from a theoretical 4 to an actual value 

of 3.6. 

 

The speed-up results found for virtual machines reinforce 

our belief that the massive drop-off in performance noted in 

the Gaussian results appears to be as a result of contention 

within the multicore processor rather than any software or 

Gaussian_09 issue. Had this drop-off been program related, 

then an equally substantial drop in speedup factor for the 8-

core VM implementation would also have been evident. 

 

 
 

According to the authors’ findings, a six (hex) core proc-

essor runs more efficiently and hence gives better results 

when run using virtual machines (VMs) rather than in bare-

metal mode. However much of this argument centres round 

the fact that VMs allow much better granular control over 

the available resources. Gaussian_09 32-bit software only 

appears to allow the use of four cores in SMP mode although 

clearly there are six cores available. The authors believe that 

the 64 bit Linux version would have allowed the use of six 

cores and hence would partly nullify this argument. 

 

HPC Performance 
 

Carrying out tests on individual machines as well as run-

ning the likely target software is necessary to obtain essen-

tial design data for any new cluster. However, it is the even-

tual performance of that cluster as a complete unit that is 

crucial to the success or otherwise of any high performance 

computing (HPC) cluster system. HPCs tend to be operated 

 
Figure 3 – VM Comparative Performance 
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in two distinct modes representing the needs of the user. 

Compare the following cases: 

 

1. In this case the user aims to obtain the results for 

a single or particular job as soon as possible. 

2. In this case the user aims to obtain the results for 

a large batch of jobs as soon as possible. 

 

In Case 1, the user attempts to complete a job in a fraction 

of the time it would otherwise take on a conventional ma-

chine without regard to the overall efficiency. The system is 

made into a single machine through the use of symmetric 

multiprocessing (SMP) between cores in a node and mes-

sage passing interfaces (MPI) between nodes to ensure eve-

rything works cooperatively under the general guidance 

from the headnode. 

 

In Case 2, the user wishes to obtain the result for a batch 

of jobs in the shortest possible time. The user aims to con-

figure the system to maintain a peak level of efficiency dur-

ing batch processing. In that way the overall time of a large 

batch of jobs can be minimised. 

 

The Application Framework for Computational Chemistry 

(AFCC) is a framework specifically developed by the au-

thors to process large batches of Gaussian_09 jobs, refer to 

Figure 4. 

 

Separate instances of the command-line version of Gaus-

sian_09 solver (G09.exe) run on each compute node. Each 

instance is passed information as to where to pick up input 

configuration details along with the location of the necessary 

input files (.gjf) and possible check files (.chk) for process-

ing. These are then collected by the appropriate compute 

nodes for processing as well as returning the modified check 

files and output files (.out) back to a central collection point 

after processing. The node would then be ‘flushed’ to ensure 

a clean start for the next job on that node. This prevents any 

error in the processing of one job from affecting another. 

 

As part of the AFCC framework, four directory structures 

were created on the headnode (g09-work1, g09-work2 and 

so forth) to process batches of jobs. New batches are loaded 

into one of these directories and the process started. A suite 

of six programs were written in C# to automate the process, 

namely: 

 

i. G09prep - used to prepare the .gjf file to run ef-

ficiently on the cluster 

ii. G09submit - used to send jobs to the scheduler 

iii. G09local - accepts scheduler data and invokes 

local G09.exe program 

iv. G09archive - isolate the results into an archive 

directory to allow re-use of the directory for 

the next batch 

v. G09analyse - analyses the success and time 

taken by the node 

vi. G09rerun - same as G09Prep but allows reuse 

of .chk files 

 

 
 

 

The AFCC is not a job scheduler. However the six com-

ponent programs comprising the AFCC described above 

operate in conjunction with the scheduler built into the Mi-

crosoft HPC server software to affect a highly efficient tai-

lored solution to cluster management. The AFCC prepares 

jobs for execution and automatically loads large batches of 

jobs (typically 500 to 1000 jobs) onto the HPC scheduler 

under program control. The preparation programs (G09Prep 

and G09rerun) are used to configure the Gaussian_09 ‘.gjf’ 

files such that each individual job can be processed in the 

most efficient manner at any of the cluster nodes. 

 

While G09archive performs the necessary ‘housekeeping’ 

tasks to archive work on the cluster, G09analyse measures 

 
Figure 4 – Application Framework AFCC 
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the success of the work as well as computing the ‘cost’ in-

curred for each job in terms of time spent within the nodes. 

 

Access to these various programs is made via scripts that 

act upon specific working directories. In this way only a 

minimal set of high level directives are used to process many 

different batches of work on the HPC cluster. 

 

 

Conclusions 
 

It is the contention issue where the real interest lies and 

whether or not real progress can be gained using virtual ma-

chines rather than bare-metal machines for high performance 

clusters in the future. The interesting part lies in the fact that 

the speedup factor for virtual machines is essentially flat 

showing no sign of any contention issues as the number of 

virtual cores increase.  

 

Virtual machines offer other potential advantages when 

used within a cluster environment.  They can be kept mini-

mal avoiding a great deal of overhead that goes with larger 

installations. They can also avoid known incompatibility 

issues where, for example, different versions of Java need to 

be installed. Also the fact that a VM can be readily backed 

up means that re-deployment back to a new VM installation 

can be quick and painless. 

 

With a whole new breed of multicore processors soon to 

become readily available, it will be interesting to see if con-

tention continues to dominate the ‘bare-metal’ implementa-

tions of these 16 core and 64 core processors. The authors 

are of the opinion that virtual machines (VMs) may well 

have a place in the newer high performance computing 

(HPC) clusters. 
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