
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

25

EVALUATING THE USE OF VIRTUAL MACHINES IN HIGH PERFORMANCE CLUSTERS

EVALUATING THE USE OF VIRTUAL MACHINES

IN HIGH PERFORMANCE CLUSTERS

R L Warrender, J Tindle, D Nelson

Department of Computing, Engineering and Technology, Faculty of Applied Sciences,

University of Sunderland

Sunderland, UK

robert.warrender@sunderland.ac.uk

Abstract

It seems reasonable to assume that the highest perform-

ance from a computer node occurs when the basic operating

system has been installed directly onto a ‘bare-metal’ ma-

chine. The idea of loading an operating system within an-

other supporting virtual machines, at best sounds convoluted

and at worst, a likely drain on the overall performance of the

resulting system. However, by comparing the performance

of multicore processors in ‘virtual’ machine environments

with those in ‘bare-metal’ machines the authors explore ar-

eas where virtual machines could well result in higher over-

all levels of efficiency within a cluster environment.

Keywords: High performance computing HPC, parallel compu-

ting, cluster, virtual computing, contention, multicore proces-

sors.

Introduction

Since 2004, multicore processors have become the norm.

This has come from the need to restrict clock speeds in order

to prevent excessive power dissipation [1]. While symmetric

multiprocessing (SMP) has been a phenomenal success in

areas like laptops and workstations, this success has not

translated itself evenly to areas like cluster computing where

high performance and parallelism are necessary to achieve a

significant impact. Their success in laptops and workstations

is primarily in allowing multitasking of independent applica-

tions with core load balancing. This gives a richer fuller ex-

perience to the user rather than the ability to run any indi-

vidual program any faster. Using SMP to achieve perform-

ance and parallelism has resulted in contention within the

multicores which has hampered their usefulness (see Figure

1). The aim of this paper is to explore the performance of

multicore processors in ‘virtual’ machines (VMs) compared

with ‘bare-metal’ machines both in terms of how they deal

with contention as well as their possible use within a cluster

environment.

Throughout this paper the authors use the term ‘bare-

metal’ to signify a computer system where the operating

system has been installed directly onto a physical hard disk

and would be the only operating system in use within the

hardware computer box. Virtual Machines (VMs) are also

operating systems but have been installed within the context

of a normal operating system. Managed by a ‘hypervisor’, a

computer box can be made to support multiple VMs all ap-

parently running independently (and concurrently) within

their own space.

Contention in multicore processors is something that has

been the subject of many research papers [2-4]. Contention

is generally associated with both bandwidth and memory

resources. Bandwidth resource contention comes in the

shared bus structure between the processor cores necessitat-

ing that the concerned cores arbitrate any resulting conges-

tion. This has the effect of delaying the requests for all but

one application until the congestion is clear. Memory re-

sources can also give rise to congestion this time in shared

memory resources (such as processor cache) where one core

may alter a memory value currently being used by another

core. This has the effect of slowing down the operation of

one application at the expense of another.

The authors have installed, commissioned and operated a

cluster computer for a period of six years. The University of

Sunderland Cluster Computer (USCC) is a small but none-

the-less powerful general purpose dual boot system that is

able to run application programs within the Windows and

Linux operating environments. The USCC compute nodes

consist of some forty servers plus two headnodes (one used

for Windows and the other used for Linux). Each node con-

tains twin dual core Intel Xeon 5150 processors fitted with 8

GB of RAM.

The program being used for all tests carried out in this pa-

per is the 32-bit Windows version of Gaussian_09. This is a

state-of-the-art modelling suite based on the work of Profes-

sor John Pople who was awarded the Nobel Prize in Chemis-

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

26

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 5,

try in 1998 for his work in this field [5]. Gaussian_09 is de-

signed to model a broad range of molecular systems under a

variety of conditions. All computations performed start from

the basic laws of quantum mechanics and can be used to

build up a 3D view of the compound. It can also predict en-

ergies, molecular structures, vibrational frequencies and nu-

merous molecular properties for systems both in solution

and the gas phase.

In order to form a common comparison between results,

the Gaussian’s command-line software using the same

chemical compound (an azobiphenylboronate) was used

throughout. This sample job was run directly on the machine

in question storing the results locally to ensure no external

network issues arose. In this way the authors were able to

compare the results from both the existing cluster machines

as well as from a new six (hex) core workstation.

Gaussian_09 is not just a single program but a suite of

modules, which Gaussian terms ‘links’, that are used to

achieve its goals. The Gaussian website lists the function of

each of these links [6]. During normal execution of a Gaus-

sian job, the same program code (i.e. the link) could be

called several times from within the Gaussian job before the

job is considered to be complete. This would suggest that the

Gaussian_09 software is primarily sequential in its execution

but makes as much use as it can of any declared hardware

resources to utilise parallelism within each ‘link’ module.

Gaussian publish their own assessment of hardware per-

formance for 1, 2, 4 and 8 core machines for the compound

Alpha Pinene [7]. Throughout this study, Gaussian_09 has

been set up to use the same numbers of cores in its calcula-

tions so that direct comparisons can be made between differ-

ent configurations. The results relate to the total time taken

by the software within a node (or operating system instance),

and have been ‘normalised’ and shown as a speed-up factor.

The speed-up factor compares this measured time against

that taken for Gaussian_09 software to complete a job using

the same physical machine but with a single core processor.

‘Bare-metal’ performance

The hardware tests were run on two classes of machine.

 Dell 2950 twin dual core server currently installed on

the USCC. They consist of twin dual core Xeon

5150 64 bit CPUs (four cores) running at 2.66 GHz

with 8 GByte of installed RAM. This processor

supports Intel Virtualisation Technology but not In-

tel Hyper Threading.

 Viglen workstation utilising a single Intel Core i7

3930K Sandy Bridge-E (Hex core) running at 3.2

GHz with 32 GByte of installed RAM. This proces-

sor supports both Intel Virtualisation Technology as

well as Intel Hyper Threading Technology.

The results of these tests are set out in Table 1.

Intel has two different technologies which merit some

comment:

1. Virtualisation Technology (VT)

2. Hyper Threading Technology (HT)

Virtualisation Technology in Intel terms is hardware support

for the more commonly known software-based virtualisation

solutions such as Microsoft Hyper-V, VMWare, IBM Zen,

etc.

Hyper Threading Technology is a feature that under certain

conditions will allow two threads to run concurrently within

the processor when calling two different CPU functions.

This results in the operating system seeing twice as many

processors (e.g. a four core processor would appear as eight

processors – four real and four virtual). Intel claims that this

can account for up to 30% performance enhancement but is

dependent on the scheduling of tasks to the cores. Under

certain conditions, HT can actually end up degrading the

performance [8].

Table 1. Comparative times to execute the test job on different

machines using various numbers of specified cores

 Cores Time (secs) Speed-Up

Dell 2950

Server (Twin

Dual Core)

1 56470 1

2 29158 1.9

4 15612 3.6

Viglen

Workstation

(Hex Core)

1 29812 1

2 15172 2

4 6266 3.6

Perfectly

Linear

1

n/a

1

2 2

4 4

8 8

Published

Gaussian

Results

1

n/a

1

2 1.9

4 3.4

8 4.3

Note: All timings shown are an average of several ex-

perimental runs where the repeatability was found

to be within a range of 1.5% of the average value.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

27

EVALUATING THE USE OF VIRTUAL MACHINES IN HIGH PERFORMANCE CLUSTERS

The results as displayed in Figure 1 show a slightly better

than predicted speed-up for both of the hardware machines

compared to published Gaussian results. However, it has to

be taken into account that the compound used in tests carried

out by the authors is not the same as that used in the Gaus-

sian published results. It is unfortunate that we were unable

to run the test job further than four processors. The authors

believe that Gaussian_09 software checks the number of

physical cores available and rejects any attempt to run a job

with a higher number of specified cores.

The Gaussian published results are interesting in that they

show a marked drop in the expected speed-up as the number

of cores increases (i.e. a speed-up of only 4.2 when using an

eight core processor). The authors believe that this is due to

resource contention issues in a multicore system based on

virtualisation results discussed later in this paper.

There is a fundamental difference in how the user executes

applications on cluster compute nodes as compared to work-

stations and infrastructure servers such as DHCP, DNS, Da-

tabase and Web servers. Cluster compute nodes are gener-

ally run as close to their full processor utilisation as is physi-

cally possible for long periods of time (perhaps several

weeks) to maximise the cluster performance and minimise

job run times. Nodes are generally allocated a single

software job to execute at any time (under control of the

headnode) and are not expected to undertake any other task

until this is complete. Workstations and infrastructure serv-

ers, on the other hand, have to remain vigilant to ensure that

any requested task is dealt with without interruption to its

current activities. This requires the processor to have suffi-

cient resources ‘in hand’ to deal with these requests as and

when required.

Although contention is an issue in workstations and infra-

structural servers, the effect on compute cluster nodes per-

formance is far more marked due to the desire to always

operate at the maximum speed-up possible.

‘Virtual Machine’ performance

All virtual machine performance tests were carried out on

a Viglen six (hex) core workstation. The base operating sys-

tem was Windows Server 2012 R2. Unlike the tests carried

out for ‘bare-metal’ performance, a machine was setup ena-

bling Hyper-V services where a batch of machines could be

installed and started separately. The same amount of RAM

was specified for each machine (2 GBytes), only the allo-

cated number of processors was varied creating 1, 2, 4 and 8

core virtual machines onto which further installations of

Windows Server 2012 R2 were made. This general arrange-

ment is shown in Figure 2.

An overall total of twelve VMs were created, however

only those involved in the particular test were started for the

test. This structural arrangement enabled the authors to run

separate Gaussian_09 jobs in parallel on separate virtual

machines each within their own program and memory space.

Speed-up calculations take into account the overall time

taken to complete a number of parallel jobs compared with

that taken to run a job on a single core ‘bare-metal’ machine

Figure 2 – Typical VM Arrangement

Figure 1 – Hardware ‘Bare-Metal’ Performance

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

28

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 5,

The results of these tests are set out in Table 2.

The results displayed in Figure 3 show a completely dif-

ferent speed-up curve from that shown for the hardware only

case. Having a six (hex) core processor allowed the creation

of multiple VM configurations. The following were set up

and tested as four separate configurations:

1. Six VMs each consisting of one virtual processor

2. Three VMs each consisting of two virtual processors

3. Two VMs each consisting of four virtual processors

4. One VM consisting of eight virtual processors

Table 2. Comparative times to execute the test job on different

virtual machines using various numbers of specified virtual

cores

No of VMs Cores/VM Time (secs) Speed-Up

6 1 34616 5.2

3 2 17445 5.1

2 4* 11171 5.3

1 8* 5852 5.1

* In both these cases, the total number of virtual cores

exceeded the hardware cores within the processor.

The hardware ‘bare-metal’ configuration allowed only one

program instance to be executed or run at a time. This proc-

essor configuration creates a (theoretical) linear relationship

between the system speedup and the number of cores avail-

able for processing.

The authors have observed that for the virtual machines,

the performance speedup remains almost constant for active

processor cores in the range of up to eight virtual cores. The

measured speed-up obtained using VMs over this range of

cores was roughly constant (around 5.2).

Due to the way Intel implement their multi-threading

strategy, it was noted that this theoretical performance ap-

plies to twelve cores (six real and six virtual) whereas the

theoretical speedup is only equal to the number of real cores.

The shaded area shown in Figure 3 represents the overall

loss of speed-up between the measured performance and the

theoretical performance and represents the portion of proces-

sor activity necessary to implement the hypervisor.

Discussion of Results

Although the authors were not able to measure the speed-

up for ‘bare-metal’ machines having more than four cores,

even at this number of cores, contention is already evident

reducing the speed-up from a theoretical 4 to an actual value

of 3.6.

The speed-up results found for virtual machines reinforce

our belief that the massive drop-off in performance noted in

the Gaussian results appears to be as a result of contention

within the multicore processor rather than any software or

Gaussian_09 issue. Had this drop-off been program related,

then an equally substantial drop in speedup factor for the 8-

core VM implementation would also have been evident.

According to the authors’ findings, a six (hex) core proc-

essor runs more efficiently and hence gives better results

when run using virtual machines (VMs) rather than in bare-

metal mode. However much of this argument centres round

the fact that VMs allow much better granular control over

the available resources. Gaussian_09 32-bit software only

appears to allow the use of four cores in SMP mode although

clearly there are six cores available. The authors believe that

the 64 bit Linux version would have allowed the use of six

cores and hence would partly nullify this argument.

HPC Performance

Carrying out tests on individual machines as well as run-

ning the likely target software is necessary to obtain essen-

tial design data for any new cluster. However, it is the even-

tual performance of that cluster as a complete unit that is

crucial to the success or otherwise of any high performance

computing (HPC) cluster system. HPCs tend to be operated

Figure 3 – VM Comparative Performance

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

29

EVALUATING THE USE OF VIRTUAL MACHINES IN HIGH PERFORMANCE CLUSTERS

in two distinct modes representing the needs of the user.

Compare the following cases:

1. In this case the user aims to obtain the results for

a single or particular job as soon as possible.

2. In this case the user aims to obtain the results for

a large batch of jobs as soon as possible.

In Case 1, the user attempts to complete a job in a fraction

of the time it would otherwise take on a conventional ma-

chine without regard to the overall efficiency. The system is

made into a single machine through the use of symmetric

multiprocessing (SMP) between cores in a node and mes-

sage passing interfaces (MPI) between nodes to ensure eve-

rything works cooperatively under the general guidance

from the headnode.

In Case 2, the user wishes to obtain the result for a batch

of jobs in the shortest possible time. The user aims to con-

figure the system to maintain a peak level of efficiency dur-

ing batch processing. In that way the overall time of a large

batch of jobs can be minimised.

The Application Framework for Computational Chemistry

(AFCC) is a framework specifically developed by the au-

thors to process large batches of Gaussian_09 jobs, refer to

Figure 4.

Separate instances of the command-line version of Gaus-

sian_09 solver (G09.exe) run on each compute node. Each

instance is passed information as to where to pick up input

configuration details along with the location of the necessary

input files (.gjf) and possible check files (.chk) for process-

ing. These are then collected by the appropriate compute

nodes for processing as well as returning the modified check

files and output files (.out) back to a central collection point

after processing. The node would then be ‘flushed’ to ensure

a clean start for the next job on that node. This prevents any

error in the processing of one job from affecting another.

As part of the AFCC framework, four directory structures

were created on the headnode (g09-work1, g09-work2 and

so forth) to process batches of jobs. New batches are loaded

into one of these directories and the process started. A suite

of six programs were written in C# to automate the process,

namely:

i. G09prep - used to prepare the .gjf file to run ef-

ficiently on the cluster

ii. G09submit - used to send jobs to the scheduler

iii. G09local - accepts scheduler data and invokes

local G09.exe program

iv. G09archive - isolate the results into an archive

directory to allow re-use of the directory for

the next batch

v. G09analyse - analyses the success and time

taken by the node

vi. G09rerun - same as G09Prep but allows reuse

of .chk files

The AFCC is not a job scheduler. However the six com-

ponent programs comprising the AFCC described above

operate in conjunction with the scheduler built into the Mi-

crosoft HPC server software to affect a highly efficient tai-

lored solution to cluster management. The AFCC prepares

jobs for execution and automatically loads large batches of

jobs (typically 500 to 1000 jobs) onto the HPC scheduler

under program control. The preparation programs (G09Prep

and G09rerun) are used to configure the Gaussian_09 ‘.gjf’

files such that each individual job can be processed in the

most efficient manner at any of the cluster nodes.

While G09archive performs the necessary ‘housekeeping’

tasks to archive work on the cluster, G09analyse measures

Figure 4 – Application Framework AFCC

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

30

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 2, NUMBER 5,

the success of the work as well as computing the ‘cost’ in-

curred for each job in terms of time spent within the nodes.

Access to these various programs is made via scripts that

act upon specific working directories. In this way only a

minimal set of high level directives are used to process many

different batches of work on the HPC cluster.

Conclusions

It is the contention issue where the real interest lies and

whether or not real progress can be gained using virtual ma-

chines rather than bare-metal machines for high performance

clusters in the future. The interesting part lies in the fact that

the speedup factor for virtual machines is essentially flat

showing no sign of any contention issues as the number of

virtual cores increase.

Virtual machines offer other potential advantages when

used within a cluster environment. They can be kept mini-

mal avoiding a great deal of overhead that goes with larger

installations. They can also avoid known incompatibility

issues where, for example, different versions of Java need to

be installed. Also the fact that a VM can be readily backed

up means that re-deployment back to a new VM installation

can be quick and painless.

With a whole new breed of multicore processors soon to

become readily available, it will be interesting to see if con-

tention continues to dominate the ‘bare-metal’ implementa-

tions of these 16 core and 64 core processors. The authors

are of the opinion that virtual machines (VMs) may well

have a place in the newer high performance computing

(HPC) clusters.

References

[1] S. H. Fuller and L. I. Millett, "Computing

Performance: Game Over or Next Level?,"

Computer, vol. 44, pp. 31-38, 2011.

[2] S. Zhuravlev, S. Blagodurov, and A. Fedorova,

"Addressing shared resource contention in

multicore processors via scheduling," SIGARCH

Comput. Archit. News, vol. 38, pp. 129-142, 2010.

[3] R. Hood, J. Haoqiang, P. Mehrotra, J. Chang, J.

Djomehri, S. Gavali, D. Jespersen, K. Taylor, and

R. Biswas, "Performance impact of resource

contention in multicore systems," in Parallel &

Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, 2010, pp. 1-12.

[4] A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F.

Haupenthal, M. Jacobs, A. Moin, J. Reineke, B.

Schommer, and R. Wilhelm, "Impact of Resource

Sharing on Performance and Performance

Prediction: A Survey," in CONCUR 2013 –

Concurrency Theory. vol. 8052, P. D’Argenio and

H. Melgratti, Eds., ed: Springer Berlin Heidelberg,

2013, pp. 25-43.

[5] J. Van Houten, "A Century of Chemical Dynamics

Traced through the Nobel Prizes. 1998: Walter

Kohn and John Pople," Journal of Chemical

Education, vol. 79, p. 1297, 2002/11/01 2002.

[6] Gaussian. (2012, November 22). Gaussian 09 Links

[Online]. Available:

http://www.gaussian.com/g_tech/g_ur/m_linklist.ht

m

[7] Gaussian. (2012, November 22). Get Your

Gaussian Results Sooner [Online]. Available:

http://www.gaussian.com/g_prod/parallel.htm

[8] T. Leng, R. Ali, J. Hsieh, V. Mashayekhi, and R.

Rooholamini, "An empirical study of hyper-

threading in high performance computing clusters,"

Linux HPC Revolution, 2002.

Bibliography

R L WARRENDER is a Senior Lecturer at the University

Of Sunderland within the Department of Computing Engi-

neering Technology in the Faculty of Applied Sciences. Cur-

rently studying for a professional doctorate related to his

work on cluster computing, he is working on collaborative

research projects with different groups around the University

who have high computational requirements. As well as being

involved in the development and upgrade of the cluster, he

has introduced cluster computing to the undergraduate teach-

ing curriculum at the University.

http://www.gaussian.com/g_tech/g_ur/m_linklist.htm
http://www.gaussian.com/g_tech/g_ur/m_linklist.htm
http://www.gaussian.com/g_prod/parallel.htm

