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Abstract  
 

The Electromyography (EMG) signal with broad applica-

tions in various areas especially in prosthetics and myoelec-

tric control is one of the bio-signals utilized in helping hu-
mans to control equipments. In this study, measures of fo-

rearm surface EMG signals have been collected and 

processed, which is applicable to prosthetics. A statistical-

based feature extraction system for forearm electromyo-

graphic (EMG) signals is proposed. In the first step, the 

CWT is employed to generate a wavelet decomposition tree 

and six features are extracted. In the second step, an algo-

rithm based on statistical analysis method is introduced to 

compute the feature vectors for each forearm motion. This 

technique can successfully identify ten hand motions includ-

ing  forearm pronation (FP), forearm supination (FS), wrist 
flexion (WF), wrist extension (WE), wrist abduction 

(WAB), wrist adduction (WAD), key grip (KG), chuck grip 

(CG), spread fingers (SF), and a rest state (RS) including 

key grip and chuck grip, two motions known for their diffi-

culty in classification. The results showed that proposed 

technique can achieve a classification recognition accuracy 

of over 96% for the eight hand motions. 

 

Introduction 
 
 When a muscles contracts, myelectric potential occurs 

along the muscle fiber. EMG signal is measurable at a skin 

surface with non-invassive electrode. The signal contains the 

information about motion perform, such as the magnitude of 

muscle activity. Hence EMG signals are used to generate 

control commands for bio-control applications such as upper 

limb prostheses. 
   

 Much research is done on prosthetic hand has been on 

EMG analysis and its patter recognition, but only one partic-

ular joint prosthetic hand is in common use. Consider the 

commercial applicability of prosthetic hand, the research on 

multi-motion EMG hand is necessary. However, as the 

number of degree of freedom (DOF) increased, it was diffi-

cult to discriminate the operator‟s intended motion with suf-

ficiently high accuracy due to their nonlinear and non-

stationary of EMG characteristics. Here hand motion recog 

 

 

 

nition method based on EMG signal using CWT with statis-

tical based approach is used. Sensor selection method is also 

proposed to serve in real time approach. 

 

A. Data Acquisition 

 
 The experimental surface EMG signals used in this study 

have been provided by the Institute of Biomedical Engineer-
ing at the University of New Brunswick with a protocol ap-

proved by the University‟s Research Ethics Board [1]. Espe-

cial data acquisition systems were used to collect surface 

EMG signals, a 16-electrode linear array with inter-electrode 

spacing of 2 cm was used (see Fig. 1). Each channel was 

filtered between 10 and 500 Hz and amplified with a gain of 

2000. Typical surface EMG is shown in Fig. 2 for one sub-

ject. 

 
 

Figure 1. A cross section of the upper forearm to illustrate the 

locations of 16 surface electrodes and six needle electrodes 
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 These EMG signals were recorded in six subjects while 

they performed 10 hand movements for 5 second each, fol-

lowed by a 2 minute resting period. All subjects denied fati-

gue during these exercises. The location of surface elec-

trodes is depicted in Fig. 1 in a cross section of the forearm. 

The motions includes forearm pronation, forearm supination, 
wrist flexion, wrist extension, wrist abduction wrist adduc-

tion, key grip, chuck grip, hand open, and a rest state. 

 
Figure 2. Typical Surface EMG for one subject 

 

B. Wavelet Transform 

 
     Wavelet transform is being used in broad areas of biosig-

nal processing. Wavelet transform is generally divided into 

either a discrete and or continuous form. The continuous 

wavelet transform (CWT) of a signal s(t) is defined as the 

integral of the product between the signal s(t) and the daugh-

ter wavelets, which are the time translation and scale expan-

sion/compression versions of a mother wavelet function ψ 

(t). Equivalent to a scalar production, this calculation gene-

rates continuous wavelet coefficients CWC (a, b), which 

determine the similarity between the signal and the daughter 

wavelets located at position b (time shifting factor) and posi-

tive scale a: 
CWC(a, b)= ∫-∞

+∞S(t)(1/√a)ψ*((t-b)/a)dt                             (1) 

Where * stands for complex conjugation and ψ Є L2 (R)\ n 

{0}. In the frequency domain, Equation (1) is expressed as: 

F{CWC(a,b)}=√aψ*(a.ω)S(ω)                                            (2) 

Where F {CWC (a, b)}, ψ *(ω), and S(ω) stand for the 

Fourier transforms of the continuous wavelet coefficients 

CWC (a, b), the signal S (t), and the mother wavelet function 
ψ (t), respectively. Equation. (2) shows that a mother wave-

let function is a band-pass filter in the frequency domain, 

and the use of CWC identifies the local features of the sig-

nal. According to the theory of Fourier transform, the center 

frequency of the mother wavelet ψ (aω) is defined as F0/a, 

given that the center frequency of the ψ (ω) is F0. Conse-

quently, extraction of frequency contents from the signal is 

possible in different scales. In the windowed Fourier trans-

form, the frequency resolution is constant and depends on 

the width of window. However, wavelet transform offers a 

rich analysis for a wide variety of window widths as the 

function of a. Use of a wide variety of mother wavelet func-
tions, which must satisfy the admissibility condition Cψ, is 

another advantage of wavelet analysis [5]: 

 

Cψ=∫-∞
+∞ (|ψ*(ω)|2)/ω dω α ∞                                              (3) 

Cψ is satisfied if the mean value of the mother wavelet 

function ψ(t), is equal to zero and ψ (t) decays to zero rapid-

ly when t→ ± ∞. If the mother wavelet satisfies the above 

condition as well as orthogonality, the signal can be recon-

structed from wavelet coefficients. 

Unlike DWT, CWT operates at any scale and is conti-

nuous in terms of shifting. In the calculation of CWC, the 
mother wavelet is shifted smoothly throughout the analyzed 

signal and gives rich time–frequency information. The main 

drawback of CWT is that the computation is time-

consuming. For signals with low signal to noise ratio, CWT 

could work better than DWT because DWT down-sampling 

of the signals can lead to the loss of significant information. 

Wavelet decomposition of the signals is also divided into 

two main branches: pyramid and packet decompositions. In 

both methods, signals are divided into approximation (low 

frequencies) and detail (high frequencies) in the first level. 

In the pyramid decomposition, after the first level, only ap-

proximations are permitted to be decomposed through higher 
levels. However, in the packet decomposition both approxi-

mation and detail are decomposed into further levels. There-

fore, packet decomposition offers rich contents of signals. 

For EMG signals, the significant frequency contents are 

achieved in high scales. Continuous wavelet transform, 

which means continuous shifting through time, is used with 

packet decomposition is used. Therefore, CWT converts a 
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one-dimensional signal s (t) into a matrix of CWC (a, b) as 

follows: 
                                                           N-1 

CWC (a, b) = Ts /(√|a|) ∑ ψ*[(n-i)Ts/a]S(nTs)                   (4)                              

                                    n=0 

where i = 0,1,2,. . .,N,  Ts is sampling time and N stand for 
the number of samples, respectively. 

 

 In classification, feature vector is defined as a compressed, 

meaningful vector possessing the significant information of 

different classes. Here CWC is used for the calculation of 

feature vectors for EMG signals. The CWC of the signal, 

itself, is not appropriate as a feature vector because it is 

computationally expensive. Hence, further processing is 

needed in order to define a precise and compressed feature 

vector, which is explained in the next section. 

 

 
 

Figure 3. Segmented Surface EMG signals in a 256-points win-

dow from one subject performing 10 different hand motions 

 

C. Mother Wavelet Matrix and Sensor Se-

lection 

 
 Selection of the mother wavelet function is a challenge in 

wavelet transform. Two points regarding the application of 

mother functions are discussed here. The first concern is the 

selection of proper mother wavelet function since the appli-

cation of mother wavelets is problem-dependent. Applicable 

mother wavelet functions in EMG signal processing could 

vary depending on the parameters of the problem at hand. If 

the technique is based on the similarity of the signal to the 
mother function, then the most important factor is the ampli-

tude of the wavelet coefficient across the signals. The moth-

er functions similar to the signal are not suitable for all 

wavelet based approaches. A clear example is the wide ap-

plication of the Haar function, which is dissimilar to the sig-

nals but has been introduced as a relatively efficient function 

in several studies. In wavelet-based classification systems 

the mother wavelet functions are related to the problem pa-

rameters rather than the shape of signals, unless the method 

was established based on signal similarity. Another issue in 

EMG signals classification is the optimal sensor selection. 

Applicable sensor selection depends on the problem as well. 
For example, optimal selection of sensors for prosthetic 

hands to classify six motions is different from those for eight 

motions. To reduce the computational time for real-time 

control of a prosthetic hand, the optimal electrodes to be 

chosen are presented for the ten motions classification by 

introducing surface electrode matrix (SEM).  

 

D. Feature Vector Algorithm 

 
 First, the feature vector is defined based on the following 

steps: 1] Signal segmentation: Here surface EMG signals are 

classified for ten hand motions, after recording EMG signals 

by means of sixteen electrodes for surface, the raw signals 

were segmented into the 256-point windows for surface 

EMG signals. For simplicity, a signal with a length of 256 
points is called the segmented signal. Therefore, a matrix of 

segmented signals is 16 X 256 metrics and can be one input 

for the control system of prosthetic hand.  

2] In the fourth decomposition level, continuous wavelet 

coefficients of the segmented signals (CWC-SS) were calcu-

lated (24 scales for each segmented unit signal). 

3] The average of the absolute value of the segmented sig-

nals (1 X 256 vectors) were calculated for each segmented 

signal and titled „weight‟ (W) to construct the feature vector 

as follows:                    

                  N 

W = (1/N) ∑ | Si (t) |                                                        (4) 

                 i=1 

Where N is the number of data points in each segmented 

signal (256). 

4] The calculation of feature vectors – six feature vectors 

are:  
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A] Weighted sum of absolute value of CWC-SS (SA) is 

calculated as the sum of the absolute value of CWC-SS mul-

tiplied by the average of the absolute value of the segmented 

signals (weight). 

                        N 

SA(a15,b)=W(∑|CWC(a15,b)|)                                       (5) 

                                    n=1  

where a15 is the scale related to (4, 15) from de-

composition tree. Scale selection is another important issue 

in wavelet analysis. Decomposing the signals into higher 

scales leads to a greater focus on the frequency domain. 

Nevertheless, computational time in CWT is of paramount  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

Figure 4. Feature Extraction Algorithm 

significance, and going through high scales makes the com-

putations for the real-time control system of the prosthetic 

hand difficult. The fourth level of decomposition has been 

considered the reasonable level. Based on trial-and-error, 

a15 represented larger wavelet coefficients, and subsequent-

ly the daughter wavelet at this scale is more similar to both 
classes of EMG signals, which, at that scale, leads to a 

greater difference in the wavelet coefficient from one motion 

to another [2].  

B] Weighted standard deviation of CWC-SS (SD) is cal-

culated as the standard deviation of CWC-SS multiplied by 

the average of the absolute value of the segmented signals 

(weight). 

SD(a15,b)=W(√(1/(N-1)∑(CWCn(a15,b)-(CWC ( a15, b))2   (6) 

Where (CWC(a15, b))= (1/ (N-1)) (∑ (CWCn (a15, b))        (7) 

C] Weighted variance of CWC-SS (VR) is calculated as 

the variance of CWC-SS multiplied by weight, as the last 

steps for SD and SA are defined. 
D] Weighted fourth central moment of CWC-SS (CM) is 

calculated as the fourth central moment of CWC-SS multip-

lied by weight. The basic formula is not included for sim-

plicity. 

E] Weighted skewness of CWC-SS (SK) is calculated as 

the skewness of CWC-SS multiplied by weight. 

F] Weighted kurtosis of CWC-SS (KU) is calculated as 

the kurtosis of CWC-SS multiplied by weight. 

5] All these features are normalized to make the calcula-

tions consistent. SA feature was one of the features showing 

better classification performance for surface EMG signals. 
Therefore, SA is mainly considered to define the mother 

wavelet matrix. 

The feature obtained from above steps will be used for 

identification of corresponding activity of the subject [1, 2 

and 4]. 

 

E. Matrix Formation Algorithm 

 
After selection of the feature, the following procedure is 

applied to find the MWM and SEM: 

For each pair of motions the corresponding entity of 

MWM matrix is the function ψ that possesses the minimum 

value for the criterion C(ψ): 
      L 

∀i,j=1,…….10 and i≠jMWM(I,j)= ψ:min[(1/L)∑Dl(ψ)]    (9) 

   ψ                   l=1 

where L is the number of the electrodes and ψ is selected 

from a pool of 324 wavelet basis function. 

 

Dl(ψ) = (Ri(ψ)+Rj(ψ))/(|Mi(ψ) -Mj(ψ) |)                            (10)      

 

Raw EMG 
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where Ri(ψ) is the range of SA function for all k = 1, . . .N, 

and N = 240 segmented signals for i
th

 motion (N = 240 since 

there are six subjects and 40 segmented signals for each sub-

ject): 

Ri(ψ) = |mink(SAik(ψ)) - maxk(SAik(ψ))|                             (11) 

In Equation (10), Mi(ψ) is the average value of SA function 
for all 

k = 1,. . .,N segmented signals for ith motion: 

                     N 

Mi(ψ) = (1/k)∑SAik(ψ)                                                        (12) 

                     k=1 

where SAik(ψ) is the value of SA function for ith motion and 

kth segmented signal calculated by Equation (6). By mini-

mizing the value of C (ψ) and therefore the value of Dl (ψ) 

for each pair of motions, the mother wavelet having the less 

range of feature values for N segmented signals and more 

difference between two motions is selected. After finding 

MWM matrix, SEM matrices can be obtained. For each pair 
of motions, the corresponding entity of SEM matrix is the 

surface electrode number, which has the minimum value of 

Dl(ψ) function as Equation (10) calculated for corresponding 

mother wavelet extracted from MWM matrix.   

 

F. Discussion 

At this juncture six statistical features are studied for sur-

face EMG signals for one specific scale recorded from a  

 
 

Figure 5. Ten hand activities of one of the subject 

specific sensor attached to the arm of one subject. Among 

the features, SK and KU did not show proper classification 

for this scale/sensor and neither for the others. The other 

four features can be useful for forearm EMG signal classifi-

cation. It is worth mentioning that CM feature cannot visual-

ly show proper classification. However, by zooming on the 
CM plot, more information may be observed. Also, mother 

wavelet matrices (MWM) matched with our experimental 

data surface EMG sign. 

The advantages of the proposed technique can be summa-

rized as follows: 

1. The number of motions is increased to ten hand mo-

tions. Chuck and key grips, which are the complicated 

motions for classification because of the engagements 

of several in-depth muscles and complexity of the sig-

nals, are studied by the proposed algorithm. 

2. The presented features would also be appropriate for 

training purposes of intelligent classifiers or to deter-
mine rules for fuzzy systems. 

3. This method is able to find optimal sensors for each pair 

of motions applicable for classification purposes. 

 

Conclusion 

 
 A method suggested extracting appropriate features for 

forearm electromyographic (EMG) signals using a mother 

wavelet matrix (MWM). After broad investigations on 324 

mother wavelet functions, the combination of some mother 

wavelets ameliorated the EMG signal analysis. Among sev-

eral installed electrodes on the subjects‟ forearms, the op-

timal sensors appropriate for feature extraction were selected 

in terms of surface electrode matrix (SEM). Six statistical 

feature vectors are also studied. 
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