TY - JOUR
AU - Ye Xu
AU - Haichao Zhang
PY - 2019/04/25
Y2 - 2019/08/19
TI - SLOPE ONE COLLABORATIVE FILTERING BASED ON USER SIMILARITY
JF - International Journal of Advanced Computer Technology
JA - IJACT
VL - 8
IS - 2
SE - Articles
DO -
UR - http://ijact.org/index.php/ijact/article/view/12
AB - To solve the problem of data sparsity in traditional collab-orative filtering algorithm and improve the accuracy of rec-ommendation algorithm, a Slope based on user similarity is proposed.One Filling Score Matrix Collaborative Filtering Algo-rithms. The algorithm first uses the basic cosine similarity to calculate the similarity between users and generates the user similarity matrix, then fills the original user similarity matrix with the score predicted value of Slope One algorithm as the backfill value of the first n neighbors, and finally recommends the filled similarity matrix according to the traditional item-based collaborative filtering algorithm. Slope One collabora-tive filtering algorithm based on user similarity takes full ac-count of the similarity between users when filling the matrix, which makes the score prediction more accurate. The new al-gorithm alleviates the problem of data sparsity to a certain extent and improves the accuracy of the algorithm. The im-proved algorithm, classical collaborative filtering algorithm and even-weighted Slope One algorithm are tested on Movie Lens dataset. The results show that the Slope One collabora-tive filtering algorithm based on user similarity effectively al-leviates the problem of data sparsity and has better recom-mendation effect.
ER -