Simulation of the passage of ion flows through nanotracks

  • Arnold Kiv South-Ukrainian National Pedagogical University
Keywords: cylindrical nanopore, ion flows, biosensors

Abstract

A computer model of a cylindrical nanopore created using the classical method of molecular dynamics is described. The essential element of the model is the potential wells of the adsorption centers on the internal surface of nanopore, the depth of which is determined by the coefficient in Hooke's law. The model describes well experimental features of the passage of ion flows in real nanotracks in modern biosensors.

Downloads

Download data is not yet available.

References

[1] Renkin E M Filtration, diffusion, and molecular sieving through porous cellulose membranes J. Gen. Physiol. 38 (1954) 225-43.
[2] Fundamentals of Ion-Irradiated Poly-mers Ed. D. Fink, Springer Series in Materials Science, 63 Berlin: Heidelberg, 2004.
[3] J. Ennis, J.L. Anderson, Boundary ef-fects on electrophoretic motion of spherical particles for thick double layers and low ζ-potential, J. Colloid Interface Sci., 185 (1997) 497-514.
[4] Hui Liu, Shizhi Qian, Haim H. Bau, The Effect of Translocation Cylindrical Particles on the Ionic Current through a Nanopore, Bio-physical Journal, 92 (2007) 1164-1177.
[5] Jyh-Ping Hsu, I-Fan Ko, Shiojenn Tseng, Importance of Boundary Effect on the Diffusi-ophoretic Behavior of a Charged Particle in an Electrolyte Medium, The Journal Phys. Chem. C 116 (7) (2012) 4455-4464.
[6] Junrong Wang, Li Zhang, Jianming Xue, Guoqing Hu, Ion diffusion coefficient meas-urements in nanochannels at various concen-trations, Biomicrofluidics 8 (2) (2014) 024118.
[7] Kittipitch Yooprasertchuti and Panadda Dechadilok, Relaxation Effect on Intra-pore Diffusivities of Highly Charged Colloidal Par-ticles Confined in Porous Membranes, Transport in Porous Media 123 (2) (2018) 341-366.
[8] Fink D., Muñoz Hernández G., García Arellano H., Vacík J, Havranek V., Hnatowicz V., Kiv A., Alfonta L., Nuclear Track-Based Biosensing: An Overview Rad. Eff. Def. Solids 171 (2016) 173-185.
[9] Fink D., Muñoz H. G., Alfonta L., Ion track-based urea sensing Sensors and Actua-tors B 156 (2011) 467–70.
[10] García Arellano H., Fink D., Muñoz H. G., Vacik J., Hnatowicz V., Alfonta L., A nu-clear track-based biosensor using the enzyme Laccase. Appl. Surf. Sci. 310 (2014) 66-76 in: Selected manuscripts arising from the 18th Intl. Conf. on Surface Modification of Materi-als by Ion Beams(SMMIB-2013), Sep 15-20, 2013, Kusadasi, Turkey, Eds. A Öztarhan, J Baglin.
[11] Fink D., Vacik J., Alfonta L., Kiv A., Mandabi Y., Muñoz H. G., Optimization of transport processes in etched track-based bio-sensors, Rad. Eff. Def. Solids 167 (2012) 548- 68.
[12] Dietmar Fink, Jiri Vacik, Vladimir Hna-towicz, G. Muñoz Hernandez, H. Garcia Ar-relano, Lital Alfonta, Arik Kiv, Diffusion ki-netics of the glucose/glucose oxidase system in swift heavy ion track-based biosensors, Nu-clear Instr. Meth. Phys. Research B 398 (2017) 21-26.
[13] Humberto Garcia Arellano, Gerardo Munoz Hernandez, Dietmar Fink, Jiri Vacik, Vladimir Hnatowicz, Lital Alfonta, Arik Kiv, Dependence of Yield of Nuclear Track-Biosensors on Track Radius and Analyte Con-centration, Nuclear Inst. and Methods in Phys-ics Research, B 420 (2018) 69-75.
[14] Mykytenko N., Fink D., Kiv A., Com-puter modeling of ion current pulsations in track-containing foils, J. Computational Sci-ence 6 (2015) 34-9.
[15] Kiv A., Mykytenko N., Fuks D., Dahan I., Meshi L., Molecular Dynamics probing of the energy spectrum of particles in radiation stimulated processes International J. Ad-vanced Comp. Techn, 4 (6) (2016) 81-6.
[16] D. Fink, I. Klinkovich, O. Bukelman, R.S. Marks, A. Kiv, D. Fuks, W.R. Fahrner, L. Alfonta, Glucose determination using a re-usable enzyme-modified ion track membrane, Biosens Bioelectronics, 24 (2009) 2702–2706.
[17] J.M. Winey, Alison Kubota, and Y.M. Gupta, "A thermodynamic approach to deter-mine accurate potentials for molecular dynam-ics simulations: thermo-elastic response of aluminum," Modelling Simulation Materials Science Engineering 17 (2009) 055004 DOI: 10.1088/0965-0393/17/5/055004; and 18 (2010) 029801.DOI: 10.1088/0965-0393/18/2/029801.
[18] A. Troelsen, C# 2010 and the.NET 4 Platform, 5th Edition, vol. 1752, 376 APRESS 2010.
[19] P.J. Deitel, C# 2010 for Programmers, vol. 1296, 4th ed., Prentice Hall 2010.
Published
2020-04-25
How to Cite
Kiv, A. (2020). Simulation of the passage of ion flows through nanotracks. International Journal of Advanced Computer Technology, 9(2), 01-04. Retrieved from http://ijact.org/index.php/ijact/article/view/37
Section
Articles