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Abstract   

In this paper, we develop a regularized multiquadric method, 

which is also a non-iterative numerical method, for solving 

inverse boundary value problems governed by Laplace 

equation. The well-known ill-posed Cauchy problem is 

considered, we assume that the boundary conditions are given 

only on part of the physical boundary of the solution domain, 

we have to reconstruct the solution and its normal derivative 

on the rest un-accessible part of the physical boundary. 

During the whole solution process, we use the multiquadric 

and the regularization method to construct a regularized 

multiquadric method. Numerical experiments are given to 

demonstrate the effectiveness and efficiency of the proposed 

method. 
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1 INTRODUCTION 

Scattered data approximation has been a fast growing 

research area. It deals with the problem of reconstruction of 

an unknown function from given scattered data [1]. Naturally, 

it has many applications, such as surface reconstruction, fluid-

structure interaction, the numerical solution of partial 

differential equations and parameter estimation [2]. 

Moreover, these applications come from such different fields 

as applied mathematics, computer science, biology, and 

engineering. Increasingly parabolic inverse problems play a 

crucial role in applied mathematics and physics. Thus 

investigation of these kinds of partial differential equations 

has been recently addressed by various authors. A growing 

attention is seen in the literature to the development, analysis, 

and copy with effective methods for the numerical solution of 

parabolic inverse problems with specified boundary data in 

these 15 years [3]. And many scholars have studied the global 

collocation method for the various fields. Even the location of 

boundary itself is sometimes unknown resulting from special 

geological features. Therefore, the inverse boundary value 

problem (IBVP) arises to deal with the estimation of the 

recovered boundary conditions on unspecified part of the 

boundary. In order to make the problem solvable, partial 

accessible boundary may be over-specified for example, the 

Dirichlet and the Neumann conditions are simultaneously 

prescribed, and in some cases the auxiliary internal data are 

necessary for input. The IBVPs arise from many engineering 

applications such as heat transfer [4], geophysical prospecting 

[5], medical imaging and non-destructive testing [6] and 

acoustic and electromagnetic waves [7]. It is well known that 

the inverse problems have a typical characteristic of ill-

posedness in the sense that a slight error in the input data may 

produce an enormous change in the output solution that makes 

them more difficult to deal with. However, the measurement 

inevitably poses some noises due to the technical and physical 

difficulties. It is required to develop a numerical method to 

solve the inverse problem with noisy data input. Whichever 

mesh less method is applied, the inverse problems can be 

converted into a large-scale system of linear algebraic 

equations in which a number of unknown coefficients need to 

be considerable. However, the coefficient matrix is inherently 

ill-conditioned and the solution is highly sensitive to the noise 

of measured input data. Many regularization methods are 

additionally employed to obtain stable solutions, for example, 

the standard TR technique with the L-curve criterion (LC) [8, 

9], the truncated singular value decomposition (SVD) with the 

LC [10] and three regularization strategies TR, truncated SVD 

and damped SVD under the different choices for the 

regularization parameter [11]. Mao and Li [12] employed the 

least-square technique using the SVD to restore the stability 

with large noise level. According to the results of literature 

survey, mesh less local collocation method based on the 

multiquadric and inverse multiquadric radial basis functions 

has been applied in many fields, and the traditional RBFs are 

globally defined functions which result in a full resultant 

coefficient matrix. This hinders the application of the RBFs 

to solve large-scale problems due to severe ill-conditioning of 

the coefficient matrix. To tackle this we approximately using 

radial basis function, the shape parameter has the important 

effect on the approximation accuracy. In this paper, radial 

basis function methods with its simple implementation as a 

mesh-free method is examined. We develop a regularized 

multiquadric method, which is also a non-iterative numerical 

method, for solving inverse boundary value problems 

governed by Laplace equation. We consider two examples, in 

the first example, we consider a We take an exact solution 

which domain with the Dirichlet and Neumann data given on 

an inner circle, and solved by a regular technique using MQ. 

In Example 2, we consider a 2D inhomogeneous Helmholtz 

equation case, which with the Dirichlet and Neumann data 

and wave number. We use the MQ method could achieve the 

error figure via the software MATLAB. 
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2 FORMULATION OF MQ 

For simplicity, let Ω ∈ Rd we consider the following boundary 

value problem 

Lu = f in Ω (1) 

u = g on ∂Ω (2) 

Where L represents a linear differential operator, d is the 

dimension of problem. As for nonlinear operators, some kinds 

of linearization ways will be needed to seek the solution 

iteratively. For numerical verification opinions, we will focus 

on solving the following 

Poisson equation. 

 
and Helmholtz-type equation 

 
With λ the wave number.  

Let {(𝑥𝑗 , 𝑦𝑗)}𝑖=1
𝑁   be N distinct collocation points in Ω of 

which {(𝑥𝑗 , 𝑦𝑗)}𝑖=1
𝑁1  interior points and {(𝑥𝑗 , 𝑦𝑗)}𝑖=𝑁1+1

𝑁  are 

boundary points. Due to the exponential convergence and 

boundary points. Due to the exponential convergence and 

superior performance of MQ we indicated in section A, MQ 

is the one of the most widely adopted RBFs in Kansa's 

method. Though other RBFs can be used, we consider only 

Hard's RBF-MQ basis function. 

 

 
from which we have 

 

 

 

 
Where c is the shape parameter of MQ.  

 

For the elliptic problem (3) and (4), the idea of Kansa's 

method is to approximate the solution u by 

 
Where cj are coefficients to be determined. Next, consider the 

Cauchy problem for linear elliptic equations of second order: 

 

 
To solve our inverse problem (12)-(13), we assume that the 

approximate solution can be expressed as 

 
Where uj are the unknown coefficients to be determined, and 

𝜑(𝑟𝑗) is some kind RBF. Here rj = ǁ(x, y) − (xj, yj) ǁ is the 

Euclidean norm between points P(x, y) and Pj (xj, yj). We 

denote{(𝑥𝑗 , 𝑦𝑗)}𝐼
𝑁𝐼   the collocation points inside the domain 

Ω, while{(𝑥𝑗 , 𝑦𝑗)}𝑁𝐼+1
𝑁𝐼+𝑁𝑑 , {(𝑥𝑗 , 𝑦𝑗)}𝑁𝐼+𝑁𝑑+1

𝑁𝐼+𝑁𝑑+𝑁𝑛 are the 

collocation points on the boundary for Diichlet and 

Neumann conditions, respectively. Although both Dirichlet 

and Neumann conditions are given on the same boundary , 

we use different nodes for imposing each type boundary 

condition. By forcing (14) to satisfy (12)-(13) at the 

collocation points, we have 

 
Which can be solved for the unknown coefficients. Here N = 

Nl + Nd + Nn is the total number of collocation points. 

Equations (15)-(17) can be written in the following matrix 

system: 

 
An interesting and significant aspect of discrete ill-posed 

problems is that the ill-conditioning of a given problem does 

not prevent us from getting meaningful approximate 

solutions. Rather, it implies that the standard methods in 

numerical linear algebra for solving Equation such as 

Gaussian elimination, may not be suitable for solving this 

type of problems. As such, regularization methods are 

proposed to alleviate the difficulty of highly ill-conditioning 

problems. We briefly introduce some of them in the following 

section. 

3 REGULATION METHODS 

Before presenting our numerical results, we give a brief 

discussion of some regularization methods. 

3.1 Singular value decomposition (SVD) 

As is well known, the matrix An in Equation (14) can be 

decomposed as [13], 

 

Where U = [u1, u2… uN] and V = [v1, v2, .. vN] are matrices 

with orthogonal columns, 𝑈𝑇𝑈 = 𝑉𝑇𝑉 = 𝐼𝑁 the superscript T 

represents the transpose of a matrix, IN denotes the identity 

matrix, and D is a diagonal matrix with diagonal elements, 
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and right singular vectors of A, respectively. Using Equation 

(15), we can solve Equation (14) in the following form: 

 
We note that the ill-conditioning of A is due to the small 

singular values as shown in the denominator of (23). Based 

on the SVD, we present some commonly used regularization 

methods for ill-posed problems in the following subsection. 

3.2 TR method 

One of the most popular regularization methods is the TR, 

which in its simplest form replaces the linear system (20) by 

the minimization problem 

 
Here 𝑈 ≥ 0 is a regularization parameter. The Tikhonov-

regularized technique based on SVD can then be express as 

 
Where the Wiener weights are 

 

 

and l is the rank of A. 

 

3.3 Regularization parameters 

The determination of a satisfactory value for the 

regularization parameter u is crucial and is still under 

intensive research. In this paper, we use the LC criterion and 

the GCV to choose a good regularization parameter. LC for 

choosing the regularization parameter [14, 15]: A proper 

choice of the regularization parameter u is essential in the 

successful use of a regularization method. Define a curve 

 

The above curve is referred to as the L-curve, because it is 

shaped like the letter L for a large class of problems. We note 

here that the L-curve is a continuous curve when the 

regularization parameter is real in the TR and the DSVD. In 

numerical computation, the point with maximum curvature 

will be searched as the corner of the L-curve. For the 

regularization methods with a discrete regularization 

parameter, such as in TSVD, a finite set of points 

 

Will be obtained and interpolated by a spline curve. The L-

curve is very attractive because the method shows how the 

regularized solution changes with the regularization 

parameter u. 

4 NUMERICAL EXAMPLE 

To examine the accuracy and stability of the proposed 

regularization methods given in the above sections, we test 

two cases of homogeneous Helmholtz and modified 

Helmholtz problems. The relative average error (root mean-

square relative error: RMSE) is used. The convergence 

behavior of the BKM using three regularized methods are 

shown in the given curves of the relative average error versus 

the number of boundary knots. MATLAB regularization code 

developed by Hansen [14] has been used in our computations. 

In this section several numerical experiments are performed 

to show the efficiency and robustness of the proposed method. 

Past experiments show that the accuracy of the Kansas 

method is very sensitive to the choice of parameters in RBFs 

(e.g. the multiquadric and Gaussians, the support scaling 

factor in compactly supported RBFs), we simply choose 

𝜑(𝑟) = 𝑟11 in the all our computations due to its parameter-

free property and high accuracy compared to lower-order 

basis functions. 

4.1 Example 1 

We take the exact solution u(x; y) as 

 

and the domain Ω = {(𝑥, 𝑦)|1 ≤ (𝑥2 + 𝑦2)
1

2 ≤ 3} with the 

Dirichlet and Neumann data g(x, y) =u, h(x, y) = ∂u/∂n given 

on the inner circle . 

 
Fig. 1: influence of the shape parameter c on RMSE for the 

case n = 15. 

x2 + y2 = 1. This example was consider by [5], which is solved 

by a regular technique using MQ. On the one side, we control 

the collocation point number parameter n, observe the change 

of the shape parameter c, from 0.01 to 10, with the interval 

0.05. We can clear find the phenomenon that the c reach to 3, 

the error will be very small, and the fluctuation still exist when 

the figure over 3, while the error stay in the small range with 

the all data. AS a result, we select the optimal c = 7:56. On 

the other side, we make the shape parameter c at 7.56, transfer 

the collocation point number parameter n. Then we obtain the 

figure which exhibit the phenomenon c=7.56 the error has 
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been small. We use the method is good at decrease the error 

make the model precise. 

4.2 Example 2 

Next we consider a 2D inhomogeneous Helmholtz equation 

case given by we 

 

with the Dirichlet and Neumann data g(x; y) = u; h(x; y) = 

∂u/∂n. With wave number(𝜆 = √2), we are able to achieve 

the error figure in following.  

 
Fig. 2: Influence of the collocation point number parameter 

n on RMSE for the case c = 7:56. 

 
Fig. 3: influence of the shape parameter c on RMSE for the 

case n = 15. 

 
Fig. 4: Influence of the collocation point number parameter 

n on RMSE for the case c = 7:56 

Figure 3 shows the influence of the shape parameter c on 

RMSE. When the n = 15, the error has been control in a small 

range. It's clear to see if n over 1.5, the error is drop to a 

minimums and in the later of increase the n’s figure the error 

nearly become still. When we seek the regulation of influence 

of the collocation point number parameter n on RMSE for the 

case c = 7:56, we can realize n over 5, the error can be fall in 

a relative accuracy range. 

5 CONCLUDING REMARKS 

In this paper, a global MQ method is proposed as a spatial-

temporal approximation to solve the inverse boundary value 

problems governed by Laplace equation. The new method 

incorporates time dimension into the MQ function as a new 

variable in radial coordinate in the entire space C time 

domain. As a result, the time-dependent ill-posed problem can 

be solved as a direct problem. This over determined linear 

system with the use of two sets of collocation points: one is 

satisfied with the governing equation and the other is for the 

given conditions. To overcome the ill-conditioned resultant 

matrix, the least-square technique is introduced to find the 

best-¯t solution of the over determined linear system. And the 

capability of the LR-MQ to resist the noise is a potentially 

powerful tool for practical inverse problems in engineering 

applications. 
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