
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

1

A COMPARATIVE OVERVIEW OF THE PARALLEL COMPUTATION MODELS AND ARCHITECTURE

A COMPARATIVE OVERVIEW OF THE PARALLEL

COMPUTATION MODELS AND ARCHITECTURE
Naiswita D. Parmar, Mohammed H. Bohara and Madhukar B. Potdar, PhD

Abstract

With ever increasing data sizes, the need for faster and ef-

ficient processing is acutely felt, especially so in case of

processing of remotely sensed data. The computation in-

volved can be SIMD or MIMD type. In case of SIMD, a

repetitive computation is carried out on different data sets.

To meet the requirement faster and efficient processing in

SIMD environment, several computational model and tech-

nologies have been developed and they are subject of inten-

sive research presently. This article, recapitulates various

such technologies such as OpenMP and MPI using Intel

Xeon Phi co-processors, OpenCl and CUDA programming

using NVIDIA GPGPU processors, hybrid programming and

compares them. The potentials of Intel Xeon Parallel Studio

Xe for maximum code are optimization is discussed.

Introduction

 The applications using satellite sensor/image applications

are equipped for catching multi spectral, multi temporal and

multi resolution high determination images. This high data

requires time effective parallel data processing in

online/offline environment. These days Multicore CPUs (co-

processor accelerators) are accessible at low cost to speedup

time intensive calculation. Image processing is strong case

for parallel processing. To diminish the image processing

time with parallel programming on multicore CPU is old

methodology due to repetitive operations at local, regional

and global levels. To accomplish full abilities of present day

multicore frameworks a few parallel programming models

and parallel augmentation to consecutive language are avail-

able.

 There are two ways to parallelize an application. First,

auto parallelization includes Instruction Level Parallelism

(ILP) or use of parallel compiler. But the amount of parallel-

ism is generally very low. Second, Parallel Programming in

which application are developed to exploit parallelism. Par-

allel application development includes partitioning of the

overall task into sub task and executes them on multiple pro-

cessors in parallel. This helps to achieve better application

performance. For this an application need to automatically

scale with number of processor available. An effective paral-

lelization programming is required. Thus, the obligation for

delivering scalable parallelism falls on application develop-

er.

 The rest of this paper is organized as follows. Sections 2

and 3 define various computing models of parallel pro-

gramming. Section 4 presents the latest Intel Xeon Phi pro-

cessor, launched in comparison of NVidia GPU for deep

learning kind of applications. It’s followed by the different

parallel computing techniques one can use with Intel Xeon

Phi. And finally to keep track of all simultaneous work a

toolbox is introduced in section 5.

Classification of Parallel Computing

Model

A. OpenMP

OpenMP is directive based programming on shared

memory multithreaded parallel extension to several pro-

gramming language, (for example, C, FORTRAN or C++).

It permits parallel execution of user-defined code regions.

Most of time, OpenMP is used when compiler can't discover

parallelism. It is appropriate for a processor with multicore

architecture. OpenMP implements as a combination of an

arrangement of compiler directives. Compiler directive is

used to control the compilation of hardware description lan-

guage, which used to model electronic systems. This dis-

penses with the prerequisite for isolated compiler support. In

OpenMP, the utilization of thread is exceptionally structured

as it was designed particularly for parallel applications [8]. It

implements the fork-join model to present simultaneity. It is

reasonable for the loop parallel programming structure de-

sign. In OpenMP, it is easy to relate the quantity of thread to

the quantity of available processors and it is effectively scal-

able to an expansive number of processor.

In spite of the fact that it is straightforward and intense, an

appropriate error handling mechanism is not available. Many

profoundly parallel code blocks can't be effortlessly parallel-

ized with OpenMP because of the possibility of dependence

violation in critical code blocks. TLS (Thread Level Specu-

lation) is the solution for this problem [4]. It allows the

OpenMP programming model to be used even when de-

pendence violation arises at runtime.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

2

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 6, DECEMBER 2016

B. MPI

MPI is another programming library for message passing

between nothing shared processes i.e. time parallelizable

code blocks. As OpenMP is only available for shared

memory system, OpenMPI is the implementation of MPI

specification for writing application does support for distrib-

uted memory system where in communication is achieved

by message passing and not with shared variables. MPI is

finest choice for data structures that are dynamic, unstruc-

tured (OpenMP 3.0 the dynamic data structures) and for the

applications which require movability. Over last two dec-

ades, MPI has become the de-facto HPC (High Performance

Computing) standard [8].

 Though distributed memory computers are cheaper and

cover more extensively the scope of solutions for problems

than OpenMP, the MPI is difficult to troubleshoot and its

execution is restricted by the communication network be-

tween the nodes.

C. Hybrid

 The purpose of programming the hybrid model is to ex-

ploit the strength of both shared memory model and distrib-

uted memory model. The key concept is to utilize MPI

crosswise over appropriated nodes and OpenMP (or any

shared memory model) inside nodes. GPU additionally can

be utilized as wellspring of processing force.

 By consolidating the both one can get higher efficiency,

memory saving and simplicity of programming from shared

memory model and versatility preferred standpoint of dis-

tributed memory model.

Table 1. Compares the OpenMP and MPI programming mod-

els based on MC processors

 OpenMP MPI

Memory

Model

Shared memory

model

Distributed

memory model

Language

Support

C,C++ and Fortran C,C++, Fortran

and provisional

support for JA-

VA

Overhead Thread can be creat-

ed and joined for

particular task de-

pending on imple-

mentation

Transferring

message from

one process to

another

Variable Private and shared Only private

Heterogeneous Parallel Computing

Model

 Distinctive sorts of co-processors are more reasonable for

any particular task. For proficient usage of co-processor het-

erogeneous programming comes in picture. CPUs and GPUs

both consolidated on single integrated circuit to increase

better data exchange rate and low power utilization. The

challenging task is to implement application operations and

acquire the best performance. Furthermore, performance is

varies widely from one co-processor to another.

A. CUDA Programming

NVidia’s CUDA (Compute Unified Device Architecture)

is an API for parallel computing. The CUDA model is de-

signed to create applications scaling transparently with the

expanding number of co-processor cores gave by the GPUs

[3]. Host and device memories are considered as alternate

entities in CUDA. The CUDA parallel computing platform

gives a couple of basic C and C++ augmentations that em-

power communicating fine-grained and coarse-grained data

and task parallelism. In fine grained multithreading switch-

ing between threads done on each instruction cycle, which

possibly slows down execution of individual thread. On the

other hand coarse grained multithreading switches between

thread only done when current execution thread causes some

long latency event. The programmer can express the paral-

lelism in a high level language, for example, C, C++,

FORTRAN or open source as OpenACC directives.

 Thread (worker) administration in CUDA is done implicit-

ly i.e. Developers are not in charge of thread creation and

demolition. Workload partitioning and mapping is done ex-

plicitly.

B. OpenCL Programming

 Open Computing Language (OpenCL) is a framework for

parallel programming executed on heterogeneous platforms.

The OpenCL distinguishes between the device and host and

defines a multilevel memory model; consequently portability

is the key component of OpenCL. It designed principally for

GPUs. However, it can be used with other platforms, for

example, multicore CPUs. That is the reason it underpins

both data parallelism for GPUs and task parallelism for

CPUs. The motivation behind this hybrid model is to exploit

the qualities of both shared memory model and distributed

memory model.

 These days CUDA and OpenCL are the dominant GPGPU

frameworks. CUDA is NVidia framework, therefore it does

International Journal of Advanced Computer Technology (IJACT)

3

A COMPARATIVE OVERVIEW OF THE PARALLEL COMPUTATION MODELS AND ARCHITECTURE

not cover wide range of applications support like OpenCL,

but where it is interspersed the top quality NVidia support

ensures unparalleled performance.

Table 2. Comparison of heterogeneous computing models based

on co-processors

 CUDA OpenCL

Proprietor NVidia Open Source

Compilation No runtime compila-

tion

Runtime com-

pilation

Reusability No source code re-

use across platforms

Source code

reusable across

platform

Hardware

accessibility

It gives direct access

to the hardware spe-

cific technologies

Programmer is

not able to use

hardware spe-

cific technolo-

gies

Range of

applications

Limited to NVidia Wider than

CUDA

Performance Superior to OpenCL Preferable

Intel Xeon Phi Processor

 Intel Xeon Phi is latest main cum co-processor designed,

manufactured, marketed and sold by Intel [10]. It boosts

parallel application performance and energy efficiency on

HPC. Intel Xeon Phi processor, a foundational component of

Intel Scalable System structure bring dramatic performance

for some of today's most demanding application up to 1.2

tera flops for every coprocessor [10].

 Intel Xeon Phi has 61 core SMP (Symmetric Multiproces-

sor) chip (out of these 60are available for computation).

Every Phi contains 8 GB of RAM that gives all the memory

and file system storage that each user process, the Linux OS,

and auxillary daemon processes will need [10]. Intel Xeon

Phi offers programmers scope to use their favored program-

ming language C and C++ and parallelism model. However,

the challenge lies in accomplishing best execution. For that,

the designers need to use both parallelism and vector pro-

cessing. With Intel Xeon Phi one can use both host and co-

processor to enable hybrid execution. Best performance is

achieved when all available host and coprocessor are used

[5].

 Intel Xeon Phi is processor launched in competition of

NVidia’s GPU. A closest contender to Intel Xeon Phi in

HPC market is NVidia Tesla and AMD file stream.

 Both CUDA and Intel Xeon Phi coprocessors are intended

to give high degrees of parallelism that can convey fabulous

application performance. Yet, the challenge lies in accom-

plishing the most ideal performance with less programming

efforts.

 GPU requires rewriting of application kernel in the pro-

gramming paradigm CUDA or OpenCL. The Intel Xeon Phi

can achieve high performance and low power consumption

without modify of application kernel. Compute kernel can be

proficiently ported to Intel Xeon Phi with no or minor code

changes. The exertion of porting logical applications to

CUDA or OpenCL can be much higher contrasted with di-

rective based programming model like OpenMP [7].

Table 3. Comparison of Intel Xeon Phi co-processor with NVid-

ia co-processor

 Intel Xeon Phi GPU

Parallelism Task parallelism Data parallel-

ism

Tools Intel native compiler OpenCL

Superiority For logi-

cal/arithmetic c

For FP calcula-

tion, as it is

stack based

Libraries Intel MKL libraries

+ others

CUDA libraries

+ others

Directives OpenMP and PHI

directive

OpenACC

Native pro-

gramming

model

Vector intrinsic CUDA

A. Intel Xeon Phi with CUDA

 CUDA developers can run their product with existing ap-

plication code on Intel Xeon Phi processor. To run CUDA

programs on Intel Xeon Phi processor, the CUDA code

should be changed manually. While it is technically con-

ceivable to run CUDA on phi coprocessor, products, for

example, CUDA-86 don't as of now produce code for these

devices [11]. OpenCL compiler can do this for Intel Xeon

Phi processor. That infers CUDA developers can consider

CUDA-to-OpenCL (CU2CL) source transfer to port their

code.

B. Intel Xeon Phi with OpenMP

 Designer of Intel Xeon Phi processors are pooling that

there is sufficient vector as well as thread parallelism in ap-

plication code. These will serves to profitably exploit the

hardware and to draw out the superior performance. It

doesn't make a difference in SIMD or MIMD computations

because Intel Xeon Phi can run both SIMD and MIMD effi-

ciently without putting any restrictions on how threads run

or communicate. OpenMP is pragma based approach that

streamlines the execution of the generic threads, despite the

fact that the developer's need to guarantee that thread don't

deadlock, enter race condition or limit scalability.

 In Contrast with CUDA, the Intel Xeon Phi is composed

as a coprocessor. On the other hand GPU only acts as accel-

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

4

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 6, DECEMBER 2016

erator. Intel Xeon Phi coprocessor can be used as support

processor just by aggregating existing application to run

locally on it. While it is generally simple and straightforward

to port CUDA application to Intel Xeon Phi coprocessor,

surely this does not imply that interpreted CUDA code can

accomplish the best possible performance. On the other hand

with OpenMP, Intel TBB, the coprocessors appear like SMP

on single chip [7]. So with OpenMP construct which use

synchronization the overhead is lesser than on big SMP ma-

chine. It easier to port OpenMP on Intel Xeon Phi and it

does not require laborious rewrite of kernel. Therefore com-

pared to accelerators it reduces programming effort a lot [7].

Intel Parallel Studio XE

 Intel Parallel Studio XE is first of its type vector pro-

gramming designer toolbox for HPC and technical compu-

ting applications. It helps to enhance processing cycle

through simultaneous operations on Intel Xeon Processors,

Intel Xeon Phi coprocessor and other compatible processors.

The fundamental objective of the Parallel Studio XE is to

boost application performance by exploiting the increasing

processor count and vector register width accessible in most

recent processor.

 First, the increase in cores leads to increase in the number

of available threads. And it is not handy to keep track of all

the things that may happen parallel. Furthermore, it becomes

more difficult proportionally when the core count is in-

creased. Second, vector register width helps vector opera-

tions to build. This in turn helps developers to design, build,

verify and tune code in FORTRAN, C++, and C. Intel Paral-

lel Studio XE supports OpenMP 4.0 [12].

Summary

The need for faster and efficient processing is acutely felt

with ever increasing data sizes, especially in case of pro-

cessing of remotely sensed data. The computation involved

can be SIMD or MIMD type. In case of SIMD, a repetitive

computation is carried out on different data sets. To meet the

requirement faster and efficient processing in SIMD envi-

ronment, several computational model and technologies

have been developed and they are subject of intensive re-

search presently. This article, recapitulated various such

technologies such as OpenMP and MPI, using Intel Xeon

Phi co-processors, OpenCl and CUDA programming using

NVIDIA GPGPU processors, hybrid programming and

compares them. The potentials of Intel Xeon Parallel Studio

Xe for maximum code are optimization is discussed.

 Craving for more and more compute power, especially for

SIMD computations, leads to increasing in core counts in

modern CPUs to speed up an application; such as Intel Xeon

Phi coprocessor and accelerators such as GPU. First, GPU is

more capable for atomic operations on irregular data. Se-

cond, Intel Xeon Phi coprocessor in light of many integrated

Intel core design makes utilization of both host and copro-

cessor. As GPU can improve the computational power up to

a great extent, it has quite complicated implementation and

restricted utilization. On the other hand, the Intel Xeon Phi is

beneficial for large, regular dataset and best performance is

achieved when hybrid (of OpenMP and MPI) execution is

used. But it is very challenging task to get full benefit of all

available coprocessor available in system.

 Intel Xeon Phi co-processor can be programmed with

available programming language such as CUDA and

OpenMp. CUDA has preferable execution times, but the

intricacy to construct code is bigger than OpenACC and

OpenMP. On the other hand it is quite simple and straight-

forward to port any OpenMP application to Intel Xeon Phi.

OpenMP code delivers the best performance when running

natively on Intel Xeon Phi (Intel.com). To build an applica-

tion that has multithreading, vectors which take an ad-

vantage of all available resources in modern CPU is a com-

plex and error prone task. But an application using OpenMP

or CUDA that fulfills the entire above requirement achieves

best performance. Though there are many advantages, the

memory limit will probably be the fundamental constraint

for the present era of Intel Xeon Phi coprocessor.

Acknowledgments

 We are thankful to Director, BISAG for providing infra-

structure and encouragements. Special thanks Mr. Amit

Chauhan, Parul University, for initial guidance.

References

[1] Jaroš, Milan, et al. "Implementation of K-means seg-

mentation algorithm on Intel Xeon Phi and GPU: Ap-

plication in medical imaging." Advances in Engineer-

ing Software (2016).

[2] Dokulil, Jiri, et al. "High-level Support for Hybrid

Parallel Execution of C++ Applications Targeting In-

tel® Xeon Phi™ Coprocessors." Procedia Computer

Science 18 (2013): 2508-2511.

[3] Kamalakannan, Anandhanarayanan, and Govindaraj

Rajamanickam. "High Performance Color Image Pro-

cessing in Multicore CPU using MFC Multithread-

ing." International Journal of Advanced Computer

Science and Applications 4.12 (2013).

International Journal of Advanced Computer Technology (IJACT)

5

A COMPARATIVE OVERVIEW OF THE PARALLEL COMPUTATION MODELS AND ARCHITECTURE

[4] Aldea, Sergio, et al. "An OpenMP extension that sup-

ports thread-level speculation." IEEE Transactions on

Parallel and Distributed Systems 27.1 (2016): 78-91.

[5] Teodoro, George, et al. "Comparative performance

analysis of Intel Xeon Phi, GPU, and CPU." arXiv

preprint arXiv:1311.0378 (2013).

[6] Patel, Sumit, Bhadreshsinh Gohil, and M. B. Potdar.

"Optimization of Support Vector Machine on Multi-

core processor with OpenMP.".

[7] Cramer, Tim, et al. "Openmp programming on intel

xeon phi tm coprocessors: An early performance

comparison." Proceedings of the Many-core Applica-

tions Research Community (MARC) Symp. at RWTH

Aachen University. RWTH Achen University, 2012.

[8] Diaz, Javier, Camelia Munoz-Caro, and Alfonso

Nino. "A survey of parallel programming models and

tools in the multi and many-core era." IEEE Transac-

tions on parallel and distributed systems 23.8 (2012):

1369-1386.

[9] Ledur, Cleverson Lopes, Carlos MD Zeve, and Julio

CS dos Anjos. "Comparative analysis of OpenACC,

OpenMP and CUDA using sequential and parallel al-

gorithms." 11th Workshop on parallel and distributed

processing (WSPPD). 2013.

[10] Intel Xeon Phi Product Family,

http://www.intel.com/content/www/us/en/processors/

xeon/xeon-phi-detail.html

[11] CUDA vs. Phi: Phi Programming for CUDA Devel-

opers, http://www.drdobbs.com/parallel/cuda-vs-phi-

phi-programming-for-cuda-dev/240144545

[12] OpenMP Specification, http://www.openmp.org/

Biographies

 NAISWITA D. PARMAR received the diploma degree

in Information Technology from M.S. University, Vadodara,

Gujarat in 2010, the B.Tech. degree in Information Technol-

ogy from DDU, Nadiad, Gujarat in 2014.currently, she is

pursuing her master’s degree from Parul University, Vado-

dara, Gujarat and doing her internship for final year disserta-

tion at BISAG, Gandhinagar, Gujarat.

 MOHAMMED H. BOHARA received the B.Tech. de-

gree in Computer Science & Engineering from R.G.P.V.,

Bhopal, Madhya Pradesh in 2011, the M.Tech(ICT) degree

in Computer Network from the DAIICT, Gandhinagar, Gu-

jarat. He is an assistant professor of Computer Science de-

partment at Parul University, Vadodara, Gujarat, His teach-

ing and research area includes RESTfull Web Services,

Cloud Computing, Computer Network, Algorithm Design,

Machine Learning, and Agile Methodology.

 DR. M.B. POTDAR is a 1982 Ph. D. in Physics from

Physical Research Laboratory of Dept. of Space, Govt. of

India. Later for 28 years, he was associated with the Indian

Space Research Organization (ISRO of Dept. of Space,

Govt. of India) in various capacities. He worked extensively

in development of land and atmospheric applications of Re-

mote Sensing data. Since March 2011, he is holding position

as Project Director at BISAG and organizing and steering

research in various area of software development and appli-

cations of geo-spatial data.

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.drdobbs.com/parallel/cuda-vs-phi-phi-programming-for-cuda-dev/240144545
http://www.drdobbs.com/parallel/cuda-vs-phi-phi-programming-for-cuda-dev/240144545

