
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

21

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 3, JUNE 2016

A Domain Model Framework for Engineering

Designs Metamodeling
Piah, Z. Patrick1 , Dept. Of Computer Science, Ken Saro-Wiwa Polytechnic, Bori, Nigeria. zigalopia@yahoo.com

Japheth R. Bunakiye2 , Dept. of Mathematics/Computer Science, Niger Delta University, Wilberforce Island, Nigeria.

jbunakiye@gmail.com
Igulu Kingsley Theophilus

3
 ,Dept. Of Computer Science, Ken Saro-Wiwa Polytechnic, Bori, Nigeria.

igulukt@gmail.com
Moses Onengiye Georgewill4 ,Dept. Of Computer Science, Ken Saro-Wiwa Polytechnic, Bori, Nigeria., m-

georgewill@yahoo.com

Abstract

The use of graphics models for engineering design and practice alone is quite outdated; much more emphasis is

centered on enhancing modeling by transforming these models to products that satisfies varied design intents. A

more appropriate view, is modeling engineering designs through metamodeling. Metamodeling controls

platform complexities and is productive by forming metamodel of models at a higher level of abstraction. It

provides the semantic rules for the modeling environment, which consists of the instances of concepts in the

metamodel. A metamodel in its original form describes the rules and constraints of the domain metatypes and

metarelationships that are instantiated for use in regular modeling effort. This paper therefore presents a

metamodeling framework for modeling engineering designs.

Key Words: Engineering Design; Metamodel; Domain Abstractions; Semantic Rules; Model Commonalities

1. Introduction

Metamodeling forms a metamodel of a model at a

higher level of abstraction. It provides the semantic

rules for the modeling environment, which consists of

the instances of concepts in the metamodel [4]. A

metamodel in its original form describes the rules and

constraints of the domain metatypes and

metarelationships that are instantiated for use in

regular modeling effort. Creating a metamodel of

engineering design therefore applies to the process of

generating such metamodels of making a model of an

engineering design model. Models are outcomes from

human conceptions, for example physical objects such

as telephones, automobiles etc. are models designed to

meet to meet specific engineering standards, they are

a set of drawings for the production of an object or a

system of objects aimed at bringing to bear some

descriptions from a set of specifications that describe

the function that the designed piece is to achieve [2].

Most engineering designs are created by human effort

in a bit to completing a task more efficiently by

bringing together technologies to meet human needs.

One distinguishing factor in this method of problem

solving is the open ended nature of engineering design

problems, which means there can be more than one

correct solution [3]. Though there are many processes

of design relating to engineers as much as possible,

the solution to a design problem requires some

framework methodology or process. In this paper a

framework to improve the solution to specific

engineering design is proposed, where the model

becomes a core metamodeling entity. The model also

represents the concepts within which the

metamodeling formalism is created to control the flow

of processes without including extra or unnecessary

properties captured in the design. The whole idea is

processing the models to produce specific executable

models [5]. The paradigm shift in engineering design

as a solution to meeting technological needs is

moving from mere use of graphics primitives to a

much more emphasis on transforming these models to

products that satisfies varied design intents. As much

as there is a lot of software platforms suited for

modeling, they also portend a lot of shortcomings;

users are often limited by their knowledge of the

software or by problems solvable by it [6]. These

deficiencies tend to make engineering design

standards as merely applicable to the creation of

physical objects or, perhaps, software. A more

appropriate view, however, is to branch out of these

modeling platforms that repeatedly required

significant designing or programming expertise by

capturing the characteristics of the model as concepts

for analysis, for creation and for the implementation

of new ideas and inventions. To achieve a successful

branch out from these apparent deficiencies,

specifying these models in a metamodel becomes

paramount, so that the boundaries of possible designs

are identify for the elimination of impractical, or

otherwise undesirable designs [8].

2. Related Work

Dae-Kyoo et al. [10] presented a metamodel for

describing generic solution for problems that occur

repeatedly. They applied the descriptions to design

patterns with graphical notation and complementing

mailto:zigalopia@yahoo.com
mailto:jbunakiye@gmail.com
mailto:igulukt@gmail.com
mailto:m-georgewill@yahoo.com
mailto:m-georgewill@yahoo.com

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

22

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 3, JUNE 2016

text. Their suggestion is that to encourage the use of

design patterns, the development of pattern supporting

tools is imperative. This complements ours in the

areas of considerable work on formality and features

for variability and commonalities. Matthew Emerson

et al. [11] used metamodeling and metaprogrammable

tools to aid control engineers build on computing and

communication technology to design robust, adaptive

and distributed control systems for operating plants

with partially known nonlinear dynamics. The tools

helped erase the problem of designing and integrating

large scale systems. The interesting aspect of their

work is the where networked embedded computing is

increasingly taking over the role of “universal use of

models on different levels of abstractions. J.-M.

JÈzÈquel, H. Hussmann, and S. Cook (Eds.) [12]

discussed a metamodel for the Unified Modeling

Language Critically examining the fact that models,

rather than code, now become the key artefacts of

software development, they declared that

consequently, this raises the level of requirements for

modeling languages on which modeling practitioners

should rely in their work. Which means, like ours any

inconsistency in a metamodel may cause major

problems in the subsequent applications.

Complementing the submissions, Oscar L´opez,

Miguel A. Laguna, and Francisco J. Garc´ıa [13]

offered metamodeling for requirements reuse. Their

discussion suggested that correct requirements

determination is a critical factor in software

development as it takes domain resources into

consideration. They presented a metamodel to

integrate some different types of semiformal diagrams

into a requirements reuse approach, which is capable

of controlling the diversity of notations and formats,

so that any existence of different levels of

requirements description will not make requirements

reuse difficult.

3 Defining the Engineering

Design Model

The engineering design model is simply the domain

model that represents real world concepts in the

engineering domain. The necessity for a domain

model is founded on the fact that it is the exact

conceptual entity that forms the metamodeling

instances. Figure 1 is a reservoir engineering design

model, it is one example of the numerous physical

components that can be found in a typical storage

facility for fluids [17].

Figure 1: Reservoir Model

3.1 Metamodeling Metrics
Usually engineers sort for domain knowledge

consisting of domain analysis outputs and application

with a view to solving the design issues in the

problem space. Figure 2 depicts such analysis

products involving: domain definition, defining the

scope of the engineering domain, describing

components of the context model, and feature models

for variabilities and commonalities [1].

Figure 2: Domain Analysis Products

In pursuant to meeting responsibilities domain experts

do prepare design documents from time to time to

align with current codes and standards within the

scope of the engineering scope under consideration.

This criterion may be part of overall project design

criteria or may be a separate document prepared

solely for the engineering design [18]. In either case,

it reiterates the design requirements delineated in the

contract specification and should define the applicable

codes and standards, environmental conditions, design

parameters, and other pertinent design bases that will

govern the project. Even calculations are prepared to

support the establishment of flow rates, system

pressures, temperatures, and wall thickness, and other

design parameters. In this detail metamodeling

applicability is a style that guides the design of a

complement of engineering products or settings.

Engineers wishing to create flexible and reusable suite

of products would critically follow metamodeling

metrics in the design of each object, which can

describe choices for design aspects such as materials,

colour schemes, shapes, patterns, textures, or layouts.

Feature

Models

Domai

n

Analysi

s

Context
Model

 M
e
t
a

I
n
s
t
a
n
c
e
s

Domain
Definition

 S
c
o
p
e
o
f
D
o
m
a
i
n

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

23

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 3, JUNE 2016

4. Domain Model Framework

The domain model framework is the solutions outline

that setts easier and faster design practice. In this

example the domain refers to relevant themes solely

within any engineering domain. The basic idea is to

express the domain specific terms as envisioned by

domain experts in a meaningful way, such that the

specific problem of evolving corresponding designs

can be solved. Essentially for proper

conceptualization and functioning, the domain model

framework as shown in figure 3 contain domain

classes that denotes a type of object, attributes that

describes named slots of specified types in a domain

class holding separate values, associations

representing relationships between two or more

domain classes that describes links between their

object instances. Associations can have roles,

describing the multiplicity and participation of a class

in the relationship, and additional rules that govern the

model logic.

Figure 3: Domain Model Framework

The structure of the domain model entails

conceptualization of the design issues and their

relationships. The structure depicts a conceptual

model, where all the issues are related to finding

solutions to a specific problem. The specific problem

in the problem domain simply examines the salient

views and areas of interest, and then excludes

everything not applicable in the course of solving the

problem. It means explicitly describing the area of

application that needs to be looked at to solving the

particular problem [19]. Also evident in the domain

model are the correct relationships between different

concepts clearly chosen to be independent of design

or implementation concerns. Such independence will

remove any sort of confusion among stakeholders,

especially those responsible for designing and

implementing a solution; where the model provides

the key artifact of the metamodel understanding and

clarity [14]. Once the domain concepts have been

modeled, they can then be mapped into physical

design or implementation constructs that supports

higher-level abstractions and code generation.

4.1 Complexity Control
Domain classes and relationships forms the basic

defining components for a domain model. While the

domain classes represent the concepts from the

domain; each domain relationship represents the

bindings of these concepts relative to the structural

logic of the core of the metamodel definitions [13].

Requirements elicitation is seen to be the most crucial

phase when defining a domain model, the domain

modeling framework and the requirements are

mutually dependent in such a way that, whereas

requirements help building up and clarifying the

model, the framework supports clarification of the

requirements [15]. Therefore, a carefully crafted

domain model definition is a great tool for

enhancement and for controlling complexity of the

system under development. It helps a great deal in

resolving numerous uncertainties in both the

requirements and the design intent. In numerous

engineering domains, effective domain model

definition stems from capturing industry level

requirements in the form of vocabulary. These

requirements now become valid domain entities for

the associated behaviours and relationships that

describe the entire problem space [16]. Domain model

is a very significant aspect among the different pieces

that must be created; since a domain model describes

and constrains the scope of the problem space it can

be effectively used to verify and validate the

understanding of the problem domain among various

stakeholders [9]. All domain specific metamodeling

involves a domain model at its core because it defines

the vocabulary represented by the metamodel, also

involved are the properties, and the relationships

between model attributes and values, which serves as

helpful communication tools. The domain model at

the core of a metmodel defines the elements that

constitute a model (for example, the inner and outer

diameters that make up a beam model in a typical

bridge design), it also gives rules for how these

elements may be connected together and provides the

foundation for notation definitions, validation, and

serialization properties in the metamodel [8].

4.2 Mappings and Abstraction Levels
The metamodeling vocabulary, which represents

detailed technical characteristics comes from the

application domain, it describes the needs that when

met, engineering design metamodeling can be solved

by domain engineers and users. These needs are in

form of specific abstraction levels and can be met by

mapping the appropriate concepts to the abstraction

levels [7]. The vocabulary serves a useful purpose of

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

24

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 3, JUNE 2016

mapping these abstractions to concepts in the form of

products of the attributes of the engineering domain

model, and represented as sequences of the Meta

instances. Figure 4 is such representation of a Meta

instance of a domain specific language (DSL) Script

where a real life physical pipeline build engineering

activity according to some design specification and

layout is given. The metamodeling sequence provides

the transformation mechanisms of what the DSL does

and what is carried out in real life using the

vocabulary mappings and abstraction levels. What

happens in real life is a pipeline design to

specifications according to customers or stakeholders

needs, what metamodeling does is to be able to

process stakeholders input specifications through a

meta-control scheme and direction. The resultant

effect of the internal working mechanism is an

interpreter program running on the target platform that

loads the script, and then acts on it. Which means

having got a model, all the important semantic

behavoiur is captured by the semantic model being

populated.

Figure 4: Representation of a DSL Script

5. System Requirements

Engineering development process involves the

analysis phase, design, and implementation phases.

The domain model framework is the solutions outline

that enhances the engineering designs metamodeling.

Based on the logical potentials of complexity control,

and abstraction mappings flexibility of the domain

model framework for engineering design

metamodeling, a set of requirements are found to be

necessary for a metamodel definition tailored towards

modeling engineering designs [18].

5.1 Tackling Platform Complexities
In conventional modeling, for example, parameters

define certain aspects of a design that can be used to

build the model. Though conventional modeling

embodies classes, methods, and function names that

becomes available by object creation and method

invocation to any program using the library, domain

concepts cannot be expressed effectively during

development. A metamodel for modeling engineering

designs in any specific engineering domain can tackle

the complexities of efficient expression of domain

concepts in a metamodel for possible orientations. It

involves domain-specific constructs and abstractions

from the start that are adapted towards the particular

application domain of engineering practice. With

domain specific notations it can help shelve users

from platform complexities and reduce the amount of

programming expertise needed to solve specific

problems.

5.2 Productivity
Instead of struggling with identified complexities that

often evolve from the semantic gap between design

intent and the expression of this intent in thousands of

lines of codes whose huge syntax neither conveys

domain semantics nor design intent, a specifically

designed metamodel for engineering designs can help

stakeholders focus on a new approach to engineering

designs modeling. A new method that allows them get

involved with familiar notations and have their design

intents achieved. Metamodeling sees the model only

as the key entity throughout development, it is an

approach derived from model driven engineering

(MDE) technologies comprising of Model Driven

Architecture (MDA), and Domain-Specific Modeling

(DSM). MDAs language specifications focus more on

the universal modeling language (UML) diagram

definition standards, whereas DSM language

specifications focus more on requirements within a

particular domain. UML is not an end user

representation language, and as such couldn’t possibly

capture appropriately domain concepts specific to

stakeholder viewpoints. However, the DSM approach

to the complex problem of efficiently and effectively

aiding engineering design is declarative, usually

expresses what the program should accomplish by

hiding from the user the complexities of how to solve

the problem in terms of sequences of actions to be

taken [5]. Policies are specified at a higher level of

abstraction using models and are separated from the

mechanisms used to enforce the policies thereby

enhancing development time and productivity.

5.3 Framework Functionality
Metamodeling has grown significantly over time.

Particularly existing technologies such as Model-

Centric Software Development (MCSD), System

Execution Modeling (SEM), MetaEdit+ (Graph,

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

25

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 3, JUNE 2016

Object, Property, Port, Relationship, and Role meta-

objects (GOPRR) tool for developing domain-specific

modeling languages and code generators) and Generic

Modeling Environment (GME) are widely available to

the software engineering community [18]. As new

technologies and methodologies continue to emerge,

metamodeling will continue to enhance engineering

designs modeling by offering the groundwork for

extensions without tampering with the functionality of

computing and underlying frameworks. However

some existing systems in the engineering industry are

multifaceted; one aspect may be powered with 3D

CAD software to generate project reports, and design

specifications. The other aspects may be web based

and executes all financial and allied duties. A

bottleneck is the inability of these tools to give the

engineers the required interface to freely interact with

the systems without being guided by strict design

policies inherent in the software. For these reasons,

stakeholders become so dependent on programming

expertise that is required all the time to leverage the

CAD systems and the available APIs for artefact

orientations. A metamodel for modeling engineering

designs needs to have three collaborative sub-systems

i.e. a domain model that captures the metrics of the

engineering field; the user interface model that can

enable stakeholders to interact with the system and a

solution model that integrates for artefact orientation

and code generation. As far as collaborators and

domain experts could see through to a design

scenario, the system should be able to capture it and

meet their needs [19].

6. Conclusion

The use of graphics models for engineering design

and practice alone is quite outdated; much more

emphasis is centered on enhancing modeling by

transforming these models to products that satisfies

varied design intents. As much as there is a lot of

software platforms suited for modeling, they also

portend a lot of shortcomings; users are often limited

by their knowledge of the software or by problems

solvable by it. These deficiencies tend to make

engineering design standards as merely applicable to

the creation of physical objects or, perhaps, software.

A more appropriate view, however, is to branch out of

these modeling platforms that repeatedly required

significant designing or programming expertise to

metamodeling. Metamodeling specification are

formal, where all the models are instances of the

metamodel, and the engineering design models based

on the concepts and rules set in the metamodel.

References

[1] F. Rubén, Miguel A. and J. Requejo, Development

of a Feature Modeling Tool using Microsoft DSL

Tools. GIRO Technical Report 2009

[2] Braha D, Reich Y (2001) Topological structures

for modeling engineering design processes.

International conference on engineering design (ICED

01), Glasgow

[3] Randy H. Shih P AutoCAD 2013 Tutorial - First

Level: 3D Fundamentals

[4] B. Johansson, S. Jain, J. Montoya-Torres, J.

Hugan, and E. Y¨ucesan, Using domain specific

language for modeling and simulation: Proceedings of

the 2010 Winter Simulation Conference USA

[5] Steve Cook, Gareth Jones, and Stuart Kent, (2007)

Domain-Specific Development with Visual Studio

DSL Tools, Pearson Education, Inc, USA

[6] Trask, B., Paniscotti, D., Roman, A. and Bhanot,

V. Using model-driven engineering to complement

software product line engineering in developing

software defined radio components and applications.

In Proceedings of the ACM SIGPLAN International

Conference on Object-Oriented Programming,

Systems, Languages and Applications (OOPSLA'06),

2006, 846 – 853.

[7]Wagner, S., Deissenboeck, F.: An Integrated

Approach to Quality Modeling. Fifth International

Workshop on Software Quality, In: Proc. of ICSE’07,

6 p. (2007

[8] K. Czarnecki and U. W. Eisenecker. Generative

Programming|Methods, Tools, and Applica-tions.

Addison-Wesley, 2000. ISBN 0-201-30977-7.

[9] S. Wartik and R. Prieto-Diaz. Criteria for

Comparing Domain Analysis Approaches.

International Journal of Software Engineering and

Knowledge Engineering, 2(3):403{431, Sept. 1992.

[10] A Dae-Kyoo Kim, Robert France, Sudipto

Ghosh, Eunjee Song. UML-Based Metamodeling

Language to Specify Design Patterns Computer

Science Department Colorado State University Fort

Collins, CO 80523, USA

{dkkim,france,ghosh,song}@cs.colostate.edu

[11] Matthew Emerson and Sandeep Neema and Janos

Sztipanovits Metamodeling Languages and

Metaprogrammable Tools Institute for Software

Integrated Systems Vanderbilt University Nashville,

TN 37203 E-mail: mjemerson@isis.vanderbilt.edu

June 29, 2006 Published in the Handbook of Real-

Time and Embedded Systems, Ed. Insup Lee, Joseph

Leung, Sang H. Son, CRC Press, 2006

[12] J.-M. JÈzÈquel, H. Hussmann, S. Cook (Eds.): A

Metamodel for the Unified Modeling Language UML

2002, LNCS 2460, pp. 2-17, 2002. Springer-Verlag

Berlin Heidelberg 2002

[13] Oscar L´opez, Miguel A. Laguna, and Francisco

J. Garc´ıa. Metamodeling for Requirements Reuse

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

26

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 5, NUMBER 3, JUNE 2016

WER 2002 The fifth workshop on Requirements

Engineering (WER 2002) Valencia, Spain,

[14] H. Dieter Rombach. Sofware specifications: A

framework. SEI Curriculum Module. Technical

Report SEI-CM-11-2.1, Software Engineering

Institute, Carnegie Mellon University, January 1990.

[15] Mark Simos, Dick Creps, Carol Klingler, Larry

Levine, and Dean Allemang. Organization domain

modeling (ODM) guidebook - version 2.0. Technical

Report STARS-VCA025/001/00, Lockheed Martin

Tactical Defense Systems, 9255 Wellington Road

Manassas, VA 22110-4121, June 1996.

[16] A. Sutcliffe and N. Maiden. The domain theory

for requirements engineering. IEEE Transactions on

Software Engineering, 24(3):174–196, March 1998.

[17] R. Geisler, M. Klar, and C. Pons. Dimensions

and dichotomy in metamodeling. In Proceedings of

3th BCS-FACS Northern Formal Methods Workshop.

Springer-Verlag, Sep. 1998.

[18] M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe,

and J. Vassiliou. Theory underlying requirement

engineering: An overview of NATURE at genesis.

Proceedings of the IEEE International Symposium on

Requirements Engineering, 1993.

[19] K. C. Kang, S. G. Cohen, J. A. Hess, W. E.

Novak, and A. S. Peterson. Feature-Oriented Domain

Analysis (FODA). Feasibility study. Technical Report

CMU/SEI-90-TR21 (ESD- 90-TR-222), Software

Engineering Institute, Carnegie-Mellon University,

Pittsburgh, Pennsylvania 15213, November 1990.

