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Abstract  
 

    The approach based on the classical molecular dynamics 

(MD) is developed that allows to probe the energy spectrum 

of particles in radiation induced processes. To simulate the 

effect of particles collisions in the selected interval of the 

energy spectrum the “shock function” is introduced to the 

standard scheme of MD.  This function describes the forces 

acting on the lattice atoms by the incident particles in the 

selected energy interval. The approach is illustrated by mod-

eling the ion bombardment of triatomic model crystal with 

significantly different atomic masses of constituents. It can 

be useful in particular for a prediction of clusters type 

defects formed in polyatomic crystals.  

 
Keywords: Molecular Dynamics; computer modeling; clus-

ter defects in solids. 

 

1. Introduction 
    Molecular dynamics (MD) is a widely used method in the 

investigations of radiation induced processes. This method is 

especially important when the experimental studies are time-

consuming and complex, for example in the case of 

exposure to reactor radiation. MD calculations allow 

tracking the trajectories of particles, studying mechanisms of 

materials destruction and finding the equilibrium 

configurations of structural defects [1-8]. Due to the 

application of MD method the peculiarities of the passage of 

fast particles through the matter have been established. 

    We developed the MD software that allows studying 

radiation induced processes in the selected range of energy 

spectrum of incident particles. Mechanisms of formation of 

radiation defects essentially depend on the type of incident 

particles and their energy. As a rule at the long-term 

unchanging irradiation conditions a stationary energy 

distribution of incident particles is set. In each interval of 

energy spectrum of these particles the specific mechanisms 

of defect formation are realized. The final radiation effect is 

determined by a superposition of radiation effects caused by 

incident particles in all intervals of their energy spectrum. 

Therefore to decrypt the mechanisms of formation of 

radiation defects it is important to clarify the mechanisms of 

radiation-stimulated processes in different intervals of the 

energy spectrum of incident particles.  

    To simulate the effect of atomic collisions in the selected 

interval of the energy spectrum the “shock function” is 

introduced. This function determines the forces (FSH) acting 

on the lattice atoms as described earlier in [9]. The pulses 

that are transferred to lattice atoms during irradiation are 

characterized by special random function. This function 

shows which atom in the irradiated sample is knocked, what 

energy value is chosen from the selected energy interval, and 

what the direction of hit is. 

    It should be noted that due to the superposition of 

radiation effects caused by incident particles from different 

intervals of the energy spectrum, the result of the action of 

particles from selected energy range can be partly or fully 

hidden. Therefore to estimate the role of different 

mechanisms in the radiation induced destruction of material 

it is necessary using the proposed approach to carry out the 

suggested simulations in different intervals of the energy 

spectrum and take into account the contribution of each 

energy interval to the final radiation effect.  

    The developed approach is especially useful when the 

compound under irradiation consists of atoms with 

significantly different masses. For example we demonstrate 

that it is possible to obtain new information regarding the 

formation of defects in compounds that are used as nuclear 

materials (U(Al, Si)3). Another example is a possibility to 

form the appropriate track structures for creation of 

electronic devices in track electronics [9 – 13]. 

    The properties of track devices depend on the shape of 

tracks and the electronic structure of the internal track 

surfaces. The necessary properties of tracks can be obtained 

using the proposed approach.  

2. Description of the approach  
     If radiation effects induced by the incident particles in 

the energy range (E1, E2) of the total energy spectrum are 

studied, the maximal energy transferred in elastic collisions 

to the lattice atom of mass M by ions with mass mion is ex-

pressed as:   
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In (1) the transferred energies ε1 and ε2 correspond to the 

energies of incident particles E1 and E2. 

    To simulate the elementary process induced by incident 

particles a random function (RF) is used. RF inserted to the 

computer program performs three tasks: 

 Selects an atom in the target lattice which gets a hit; 

 Selects an energy value from the interval (ε1, ε2); 

 Selects an orientation of the pulse transferred to the 

target atom. 

    A linear congruent generator (LCG) for RF is 

an algorithm that yields a sequence of pseudo-randomized 

numbers calculated with a discontinuous piecewise linear 

equation. This generator presents one of the best-

known pseudorandom number generator algorithms that are 

easily implemented and fast, especially on computer hard-

ware which can provide modulo arithmetic by storage-bit 

truncation. These generators based on linear congruent 

method are especially useful for non-cryptographic applica-

tions, such as modeling. They are effective and most used in 

empirical tests and show good statistical characteristics. 

The generator described in [14 – 16] is defined by 

the recurrence relation: 

 

mcaXX nn  )(1                             (2) 

 

where X0 is an initial value. In our model the parameters are: 

m = 232, a = 214013, c = 2531011.  

    It is assumed in the suggested model that the number of 

atoms simultaneously subjected to shock is proportional to 

the dose rate, and the number of steps is proportional to the 

irradiation dose. In order to determine the kinetic energy 

transferred to the lattice atom the scaling of the forces FSH 

should be implemented. As a reference point we used the 

energy that is necessary for irreversible displacement of 

lattice atom to interstitial position in elastic collision (Ed). 

Then the following relation may be written:    
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where t is duration of the action of the force in the process of 

one hit.  

    In computer experiment we gradually increased the value 

of the force FSH to the point where the atoms begin to move 

irreversibly to interstitial positions. This magnitude of the 

force FSH corresponds to Ed ≈ 25 - 30 eV. Such procedure 

allows to define the interval for FSH that corresponds to the 

selected interval (ε1, ε2) and respectively (E1, E2) as 

determined by Eq. (1). 

3. Computer simulation of ion 

bombardment of polyatomic crystals 

    In the MD method [17-19] the classical equations of mo-

tion with an appropriate potential of the interaction between 

particles are solved. Verlet algorithm [20] is usually used to 

solve these equations. To simulate the action of the shock 

function, the total force acting on atom i is presented by ex-

pression: 
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  is the interatomic potential 

and || jiij rrr


  is the distance between atoms i and j. 

    To apply the proposed approach we have constructed a 

model crystal with a cubic lattice that consists of three dif-

ferent types of atoms. This model crystal contained 8000 

atoms. Masses of atoms correspond by convention to Si
28

, 

Ba
145

 and U
238

. Further we denote these atoms as m1, m2 and 

m3, respectively. In Figure 1 a fragment of the model crystal 

is shown. The occupation of the lattice sites was chosen in 

such a way that each U or Ba atom has light Si atoms as 

nearest neighbors and each U (Ba) atom has Ba (U) atoms as 

second nearest neighbors. In our calculations, Lenard-Jones 

potential [21] was used with parameters taken from [22-24]. 

These parameters were slightly varied to stabilize the lattice 

of the model crystal. The potentials that describe the interac-

tion of atoms of different types were taken as an average of 

constituent’s interatomic potentials. Further simulations 

were devoted to the study of the influence of the ratio of 

atomic masses on the radiation effect under the bombard-

ment of model crystal by Nitrogen (N) ions with energy in 

different energy intervals. 

 

 
Figure1. Fragment of the model crystal.  

 
In computer experiment the bombardment was 

performed in two energy (E) intervals: (I) 34 eV – 93 eV 

and (II) 93 eV – 142 eV determined according to expression 

(1).   

It is clear that the ion bombardment in the energy 

interval (I) leads to displacement of only Si atoms into the 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Piecewise_linear_function
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Modulo_arithmetic
https://en.wikipedia.org/wiki/Recurrence_relation
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interstitial positions whereas a bombardment in the interval 

(II) leads to such displacement of both Si and Ba atoms. 

4. Ion bombardment of triatomic 

crystal. Results and discussion 
    We started with the consideration of the action of particles 

in the first energy interval on radiation-induced structural 

changes in the target crystal. As a result of simulations it 

was found that the formation of clusters of heavier atoms (U 

and Ba) occurs.  According to our definition, in heavy 

clusters heavy atoms occupy the nearest neighbor positions 

in the lattice. Such clusters are formed due to radiation-

induced formation of vacancies in the sublattice of light at-

oms (Si). These vacancies stimulate the displacements of 

heavy atoms. As a result U and Ba move closer to each other 

forming heavy clusters. Radiation stimulated diffusion of 

heavy atoms under the bombardment of particles with ener-

gy less than the threshold energy of the atomic displacement 

also promotes the formation of such clusters. 

    The kinetics of the accumulation of clusters is shown in 

Figure 2. It may be seen that for the formation of heavy 

clusters some threshold dose exists. A consideration of 

atomic configurations in the model crystal showed that at 

higher doses the formation of three-atomic clusters starts by 

adding to diatomic clusters (m2-m3) one additional atom with 

the mass m2.  

    This explains the saturation of the formation of diatomic 

(m2-m3) clusters demonstrated by the kinetic curve. With the 

further increase of the dose the accumulation of clusters 

containing m2 and m3 atoms stops and clusters containing 

only m3 atoms are formed.  

 
Figure 2. Kinetics of accumulation of m2-m3 clusters 

(the bombardment by ions in the first energy interval).  

Here  
11

32



n  is the number of diatomic clusters formed 

by one atom with mass m2 and one atom with mass m3. 

 

    As a result of a bombardment of the model crystal by ions 

with the energy in the second energy interval we observed a 

formation of similar diatomic m2-m3 clusters which are 

further destroyed with accumulation of dose. Simultaneously 

with the destruction of m2-m3 clusters the diatomic clusters 

containing only atoms with the mass m3 are formed as 

displayed in Figure 3. 

 
 

 

 
Figure 3. Kinetics of diatomic clusters formed by 

atoms with the masses m2 and m3 and by atoms with the 

mass m3 (the bombardment by ions in the second 

energy interval, 300 hits/step). Here  
11

32



n  is the same 

as in Figure 2, and  
2

3n  is the number of diatomic 

clusters formed by atoms with the mass m3. Circles and 

triangles correspond to  
11

32



n  and 
2

3n , respectively.  

 

    We obtained that the kinetics presented in Figure 3 

changes when the intensity of the ion beam is changed. As 

already mentioned, in our model the intensity of the ion beam 

is proportional to the number of atoms that get a hit during 

one calculation step. Figure 4 illustrates the results of 

formation of similar m2-m3 and m3 diatomic clusters in the 

case of lower intensity of the ion beam than in the case 

shown in Figure 3. It can be seen that the formation of m2-m3 

clusters starts later and their life time is longer. Respectively, 

the diatomic clusters of the atoms with the mass m3 form also 

later.     

 
Figure 4. Kinetics of diatomic clusters m2-m3 and m3 

(the bombardment by ions in the second energy 

interval, 200 hits/step) Circles and triangles correspond 

to  
11

32



n  and 
2

3n , respectively.  

 

Figure 5 illustrates that opposite conclusions are derived for 

the intensity of the ion beam that is in half larger than in the 

case shown in Fig. 3. As follows from Figure 5 the 

formation of m2-m3 clusters begins almost immediately after 

the irradiation starts and they are stable for a shorter period 

of time.  Diatomic clusters, consisting of atoms with the 
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large mass m3, start to form much earlier than in the case 

shown in Fig. 3.  

 
 Figure 5. Kinetics of clusters m2-m3 and m3 (the 

bombardment by ions in the second energy interval, 

400 hits/step) Circles and triangles correspond to 
11

32



n  

and
2

3n , respectively. 

  

Figure 5 shows that at larger dose rate the kinetics of 

accumulation of diatomic clusters of m3 atoms tends to 

saturate. At these doses it was observed that three-atomic 

and four-atomic clusters of m3 atoms start to form. It is 

obvious that they are formed not only by bringing together 

three or four massive atoms but also by attachment of 

additional atoms to already existing diatomic clusters of 

heavy atoms. So, the saturation stage of the kinetics of m3 

clusters may be reasonably explained by transition of 

diatomic clusters of atoms with the mass m3 into polyatomic 

clusters of these atoms. It was mentioned that in the second 

energy interval (93 eV – 142 eV) the atoms with masses m1 

and m2 are displaced from the lattice sites.  At some dose 

these clusters are destroyed and two-atomic clusters, 

consisting only of atoms with the mass m3, are formed. This 

is caused due to the ability of bombarding particles (in this 

energy interval) to displace m2 atoms. Further we observed 

the increase of the number of atoms of m3 type in the heavy 

clusters.  

    Figs. 6-8 demonstrate the dependence of the 

characteristic parameters of the formation and destruction of 

heavy clusters on the intensity of the ion beam. Fig. 6 

depicts the dependence of the threshold dose for m2-m3 

clusters formation under the ion irradiation in the first and 

in the second energy intervals on the dose rate of irradiation.  

 

 
Figure 6. Dependence of the threshold dose for the formation of 

diatomic m2-m3 clusters on the dose rate under irradiation by ions 

in the first (squares) and second (circles) energy intervals.  

 

    The almost linear dependences of threshold doses for 

heavy clusters formation on the dose rate means that the 

accumulation of vacancies leads to significant decrease in 

the bonding of heavy atoms in the lattice. In its turn, this 

changes the equilibrium positions of heavy atoms in the 

lattice and leads to the formation of heavy clusters. 

   Fig 7 shows how the dose at which the m2-m3 clusters 

break up depends on the intensity of the ion beam.  Fig. 8 

illustrates the dependence of the threshold dose for the for-

mation of diatomic clusters of m3 atoms under irradiation by 

ions in the second energy interval on the dose rate. The non-

linear dependences on the dose rate of the threshold doses 

for m2-m3 clusters destruction and m3 clusters formation in 

this case are explained by the necessity of the preliminary 

breaking of m2-m3 clusters by incident particles.  

Analysis of results of triatomic model crystal 

bombardment by incident particles from the second energy 

interval allows suggesting the features of the formation of 

clusters at higher energies. In this case, as a result of elastic 

collisions, all three types of atoms can be displaced. This 

facilitates the formation of different heavy clusters. 

Although simultaneously heavy clusters will collapse, the 

heaviest clusters will collapse to less extent. Thus, the 

radiation effect will lead to the predominance of the heaviest 

clusters. 

 
Fig.7. Dependence of the destruction dose on the dose rate for m2-

m3 clusters under irradiation by ions in the second energy interval.  
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Fig. 8. Dependence of the formation dose on the dose rate for m3 

clusters under irradiation by ions in the second energy interval.  

5. Summary  
    We report the MD approach that allows clarification of 

the contribution of incident particles in the selected interval 

of energy spectrum to the final structural damage of the 

target crystal. Its application for the case of triatomic model 

crystal is demonstrated. A formation of clusters caused only 

by atomic elastic collisions is considered. The results 

obtained for model crystal are of a general nature, and the 

developed approach can be applied for study of radiation 

effects in different materials including recently reported U-

Al-Si phases [25].  
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