
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

28

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 5,

Parallel Algorithm Performance Analysis using OpenMP

for Multicore Machines

Mustafa B
1
, Waseem Ahmed.

2

1
Department of CSE,BIT,Mangalore, mbasthik@gmail.com

2
Department of CSE, HKBKCE,Bangalore, waseem.pace@gmail.com

Abstract:Parallel programming is a language that

allows us to explicitly indicate how different portions of

the computation may be executed concurrently by

different processors. Multi-core CPU’s supports the

parallel programming that fully exploits the performance

and efficient processing of multiple tasks simultaneously.

Unfortunately, writing parallel code is more complex than

writing serial code. This is why the programmers used

many techniques and programming models such as MPI,

CUDA and OpenMP to adapt more performance.

OpenMP programming model helps in creating

multithreaded applications for the existing sequential

programs. This paper presents the performance potential

of the parallel programming model over sequential

programming model using OpenMP. The experimental

results show that a significant performance is achieved on

multi-core system using parallel algorithm.

Keywords: multicore, openMP, parallel programming,

speedup.

1. INTRODUCTION
Parallel computing is now considered as standard way for

computational scientists and engineers to solve problems

in areas as diverse as galactic evolution, climate

modeling, aircraft design, and molecular dynamics.

Parallel computer has roughly classified as Multi-

Computer and Multiprocessor. Multi-core technology

means having more than one core inside a single chip.

This opens a way to the parallel computation, where

multiple parts of a program are executed in parallel at

same time. Thread-level parallelism could be a well-

known strategy to improve processor performance. So,

this results in multithreaded processors.

Multi-core offers explicit support for executing

multiple threads in parallel and thus reduces the idle time.

The factor motivated the design of parallel algorithm for

multi-core system is the performance. The performance of

parallel algorithm is sensitive to number of cores available

in the system. One of the parameter to measure

performance is execution time. In this paper we have

considered parallelizing the Mergesort algorithm and the

Floyd’s algorithm. Rest of the paper is organized as

follows: Section 2 giving detailed description of related

work, section 3 explains programming in OpenMP,

section 4 is about detailed implementation details of

algorithms, section 5 focuses on result and analysis.

1.1 Parallel Computing
The main fact to ‘parallelise’the program code, is to

reduce the amount of time it takes to run. Consider the

time it takes for a program to run (T) to be the number of

instructions to be executed (I) multiplied by the average

time it takes to complete the computation on each

instruction (tav)

 T = I × tav.

In this case, it will take a serial program approximately

time T to run. If you wanted to decrease the run time for

this program without changing the code, you would need

to increase the speed of the processor doing the

calculations. However, it is not viable to continue

increasing the processor speed indefinitely because the

power required to run the processor is also increasing.

With the increase in power used, there is an equivalent

increase in the amount of heat generated by the processor

which is much harder for the heat sink to remove at a

reasonable speed
11

 . As a result of this, we have reached

an era where the speeds of processors is not increasing

significantly but the number of processors and cores

included in a computer is increasing instead. For a parallel

program, it will be possible to execute many of these

instructions simultaneously. So, in an ideal world, the

time to complete the program (Tp) will be the total time to

execute all of the instructions in serial (T) divided by the

number of processors you are using (Np)

In reality, programs are rarely able to be run

entirely in parallel with some sections still needing to be

run in series. Consequently, the real time (Tr) to run a

mailto:nishatonse@gmail.com
mailto:waseem.pace@gmail.com

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

29

PARALLEL ALGORITHM PERFORMANCE ANALYSIS USING OPENMP FOR MULTICORE MACHINES

program in parallel will be somewhere in

between Tp and T, ie Tp < Tr < T.

In the 1960’s, Gene Amdahl determined the

potential speed up of a parallel program, now known as

Amdahl’s Law. This law states that the maximum speed-

up of the program is limited by the fraction of the code

that can be parallelised

 S + P = 1

 ⇒ SU =

 .

The serial fraction of the program (S) plus the

parallel fraction of the program (P) are always equal to

one. The speed-up (SU) is a factor of the original

sequential runtime (T). So, if only 50% of the program

can be parallelised, the remaining 50% is sequential and

the speedup is

 SU =

= 2,

ie, the code will run twice as fast.

The number of processors performing the parallel fraction

of the work can be introduced into the equation and then

the speed-up becomes

 SU =

 ,

 where S and P are the serial and parallel fractions

respectively and N is the number of processors.

2. RELATED WORK

There are few works done to parallelize the serial

algorithms using different parallel architectures. In [1],

author has computed the value of Pi and solved linear

equations to improve performance by reducing execution

time and also shown the execution time of both serial and

parallel algorithm for computation of Pi value and for the

solution of system of linear equations.

Performance analysis of matrix multiplication

algorithms[2] done to prove parallel implementations

performs better than the sequential algorithm that is

executed on Intel Pentium CPU G630 which has dual

cores and also on Intel i7 processor. Also shows that, as

the number of cores increases, the computation time taken

by an algorithm is reduced.

In [3], author has presented the execution time of both

serial and parallel execution of naive and Strassen’s

algorithm for matrix multiplication. They conclude that

though Strassen’s algorithm consumes a lot more memory

than serial algorithm, but the performance is much better

than the traditional matrix multiplication algorithm due to

its reduced operations.

Shared memory systems can also vary widely but they

all have the ability for each processor to access all memory

as a global address space. An example of a shared memory

system is a single desktop. The advantage of using a

shared memory parallelization is that it is relatively simple

to make existing serial codes parallel. There are a few

disadvantages which include the possibility that multiple

cores and processors accessing the shared memory

simultaneously could cause a bottleneck which will slow

down a program. Also, adding more processors does not

increase the amount of memory available which could be a

problem.

3. IMPLEMENTATION DETAILS

One of the useful things about OpenMP is that it allows the

users the option of using the same source code both with

OpenMP compliant compilers and normal compilers. This

is achieved by making the OpenMP directives and

commands hidden to regular compilers.

The OpenMP standard was formulated as an API for

writing portable, multithreaded applications. It started as

Fortran-based standard, but later grew to include C and

C++. The OpenMP programming model provides set of

compiler pragmas. Many loops can be threaded by just

inserting a single loop above right to the loop.

Implementation of OpenMP determines how many threads

to use and how best to manage it. Instead of adding lots of

code for creating parallel program, the programmer just

need to tell the OpenMP which loop should be threaded. In

ordered to understand the concept of OpenMP, it is

necessary to know the concept of parallel programming.

Parallel processing is done by more than one processor in

parallel computing systems. Some the advantage of

OpenMP includes: good performance, portable, requires

very little programming effort and allows the program to

be parallelized incrementally.

3.1 Objective
We have implemented parallel algorithm using OpenMP

with the hope that they will run faster than their sequential

counterparts. A sequential program, executing on a single

processor can only perform one computation at a time,

whereas the parallel program executed in parallel and

divides up perfectly among the multi-processors. Main

Objective of this approach is to increase the performance

(speedup) which is inversely proportional to execution

time.

3.2 Overview of Proposed Work
We describe the Mergesort and Floyd’s algorithm parallely

by using OpenMP to achive the good performance by

reducing execution time on multi-core. We tested the

execution time of the algorithm on dual core and the quad

core and measured their performance as shown in the

Figure 1.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

30

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 5,

3.3 Working Modules
Being able to analyze the execution time exhibited by a

parallel program can help to understand the barriers to

higher performance and predict how much improvement

can be realized by increasing the number of processors.

The parallel algorithms described below.

Merge Sort Algorithm

In merge sort there are three steps to be done, i.e. Divide,

Conquer and Combine. Initially divide the given array

consisting of n elements into two parts of n/2 elements

each. Sort the left part and right part of the array

recursively. Merge the sorted left part and right part to get

a single sorted array. In this algorithm, the three steps-

divide, conquer and combine are done in parallel.

Algorithm: MergeSort(a,low,high)

if(low<high)

 mid(low+high)/2

#pragma omp parallel

 MergeSort(a,low,mid)

#pragma omp parallel

 MergeSort(a,mid+1,high,)

 #pragma omp parallel

 Merge(a,low,mid,high)

Floyd’s Algorithm

The Floyds algorithm is the solution for all-pairs-shortest

path-problem. Here the shortest distance from all nodes to

all other nodes has to find. The all-pairs-shortest-path-

problem is to determine a matrix D such that D[i,j]

contains the shortest distance from i to j. In this algorithm,

each thread has given a chunk size which specifies number

of iterations that thread executes.

Algorithm: Floyd(n,cost,D)

 #pragma omp parallel for private(i,j,k),shared(cost)

for k0 to n-1 do

for i0 to n-1 do

 for j0 to n-1 do

 D[i,j]=min(D[i,j],D[i,k]+D[k,j])

 end for

end for

 end for

 return

//copying D[i,j] to the cost[i,j]

for i0 to n-1 do

 for j0 to n-1 do

 D[i,j]=cost[i,j]

 end for

end for

4. EXPERIMENTAL RESULT

There are two algorithms and each has two versions:

sequential and parallel. Both the programs are executed on

intel@i5-3317U CPU which is a quad core machine. We

analyzed the result and derived the conclusion. In both the

experiment the execution times of both the sequential and

parallel algorithms have been recorded to measure the

performance (speedup) of parallel algorithm against

sequential.

The data presented in Table 1 represents the execution

time taken by the sequential and parallel programs for

Mergesort algorithm and the data presented in Table 2

represents the execution time taken by the sequential and

parallel programs for Floyds algorithm.

Table 1: Execution time for Merge Sort

Algorithm

No. of

Elements

Sequential

Program in

quad core

(sec.)

Parallel

Program in

quad core

(sec.)

Performance/

Speed up

500 0.001000 0.001055 0.947867

1000 0.003000 0.001301 2.305918

2000 0.004000 0.001503 2.661343

3000 0.006000 0.001800 3.333333

4000 0.007500 0.002805 2.673796

5000 0.009000 0.003505 2.567760

6000 0.011000 0.005001 2.199560

7000 0.013000 0.007006 1.855552

8000 0.015000 0.008001 1.874765

9000 0.017000 0.010001 1.699830

10000 0.018000 0.012010 1.498751

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

31

PARALLEL ALGORITHM PERFORMANCE ANALYSIS USING OPENMP FOR MULTICORE MACHINES

Figure 2: Execution time of sequential and parallel

algorithm of Merge Sort.

Figure 3: Speedup Graph for Merge Sort

Algorithm

Table 2: Execution time for Floyd’s algorithm
No of

nodes

Sequential

Program in

quad core

(sec.)

Parallel

Program in

quad core

(sec.)

Performance

/

Speed up

50 0.000000 0.005470 0

100 0.020000 0.013637 1.466598

200 0.080000 0.042952 1.862544

300 0.210000 0.127461 1.647562

400 0.520000 0.283614 1.833477

500 0.990000 0.543147 1.853422

600 1.710000 0.946513 1.806631

700 2.730000 1.483408 1.840356

800 4.080000 2.244393 1.817863

900 5.820000 3.179151 1.830677

Figure 4: Execution time of sequential and parallel

algorithm of Floyd’s.

Figure 5: Speedup Graph for Floyd’s Algorithm

CONCLUSION

In this work we discussed how OpenMP programming

techniques are beneficial to multi-core system. From our

study we arrive at the following conclusions: (1)

Performance is increased by parallelizing serial algorithm

using OpenMP. (2) For multi-core system OpenMP

provides a lot of performance increase and parallelization

can be done with careful small changes. (3) The parallel

algorithm is approximately twice faster than the sequential

and the speedup is linear.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

32

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 5,

The algorithms with small data set give good performance

when executed by a sequential programming. But as data

set increases performance of parallel execution increases

over the sequential and it gives best results than sequential

execution. Speedup is achieved by the ratio of sequential

execution time and parallel execution time.

REFERENCES

[1] Sanjay Kumar Sharma, Dr. Kusum Gupta,

"Performance Analysis of Parallel Algorithms on

Multi-core System using OpenMP Programming

Approaches", International Journal of Computer

Science, Engineering and Information Technology

(IJCSEIT), Vol.2, No.5, October 2012.

[2] Sheela Kathavate, N.K.Srikanth, "Efficient of Parallel

Algorithms on Multi Core Systems Using OpenMP”,

International Journal of Advanced Research in Computer

and Communication EngineeringVol. 3, Issue 10, October

2014.

[3]Vijayalakshmi Saravanan, Mohan Radhakrishnan,

A.S.Basavesh, and D.P.Kothari, “A Comparative Study

on Performance Benefits of Multi-core CPUs using

OpenMP,” IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 1, No 2, January 2012.

[4] Sodan, A.C, Machina J, Deshmeh A, Macnaughton

K, “Parallelism via multithreaded and Multicore CPUs”,

IEEE Computer Society,Volume: 43, issue: 3, pp. 24-32,

Mar. 2010.

[5] Pranav Kulkarni, Sumith Pathare, "Performance

Analysis of Parallel Algorithms over Sequential using

OpenMP", IOSOR Journal of Computer Science,

Volume6, March-April 2014.

[6] Sushil Kumar Sah,andDinesh Naik, “Parallelizing

Doolittle Algorithm Using TBB,” IEEE 2014.

[7]DolittleDecomposition

http://mathfaculty.fullerton.edu/mathews/2003/Cholesky

Mod

[8] Sanjay Kumar Sharma, Dr. Kusum Gupta,

"Performance Analysis of Parallel Algorithms on Multi-

core System using OpenMP Programming Approaches",

International Journal of Computer Science, Engineering

and Information Technology (IJCSEIT), Vol.2, No.5,

October 2012.

[9] Matrix decomposition, Wikimedia Foundation,Inc,

http://en.wikipedia.org/wiki/Matrix_decomposition.

[10] General-purpose computing on graphics processing

units, Wiki-media Foundation, Inc, [11] An Introduction

to Parallel Programming with OpenMP, Alina Kiessling

Biography

1
Mustafa Basthikodi was born in Mangalore, India, in

1979. He received the B.E. degree in Computer Science and

Engineering from the Mysore University, Mysore, India, in

2001, and the M.E. degree in Computer Science and

Engineering from the Bangalore University, Bangalore in

2008. Currently Pursuing PhD in High Performance

Computing and Embedded Systems from Visvesvaraya

Technological University (VTU), Belgaum.

In 2001, he joined the Department of Computer Science &

Engineering, PACE, Mangalore, as a Lecturer, and worked

till 2006. From 2006 to 2008, He worked as Senior Lecturer

in Department of Computer Science & Engineering in

SJBIT, Bangalore. In 2008, He joined IBM as Senior

Software Engineer and worked till 2010. Since 2010, He is

working as Associate Professor and Head, Department of

Computer Science & Engineering, in BIT, Mangalore.

 He has published in various National and International

Conferences. He has received few best technical paper

awards and also Best performer award in industry. He has

also worked as Technical Programme committee member

for the various conferences. He is a Life Member and

resource person for Computer Society of India. His subjects

of Interest include High Performance Computing &

Embedded Systems, Green & Cloud Computing, Compiler

construction tools & technologies.

2
Dr.Waseem Ahmed is currently a Professor in the

Department of CSE at HKBK College of Engineering,

Bangalore. Prior to this he has been served at different

capacities in academic/work environments in the USA,

UAE, Malaysia, Australia and India. He obtained his BE

from RVCE, Bangalore, MS from the University of

Houston, USA and PhD from the Curtin University of

Technology, Perth, Western Australia. He has published

extensively in various reputed International Journals and

Conferences. He is a reviewer for various IEEE/ACM

Transactions and magazines. His current research interests

include heterogeneous computing in HPC and embedded

Systems. He is a member of the IEEE.

