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Abstract  
 

         A regular graph with vertices of degree k  is called a 

k  - regular graph or regular graph of deree k . G  is said to 

be strongly regular if there are also integers   and   such 

that: every two adjacent vertices have   common 

neighbours and every two non-adjacent vertices have   

common neighbours. A graph of this kind is sometimes said 

to be an  ( , , , )SRG n k   . The length 
( , )

( , )max
u v

d u v  of the 

"longest shortest path" (i.e., the longest graph geodesic) 

between any two vertices ( , )u v  of a graph, where ( , )d u v  is 

a graph distance. kn  denotes the maximum number of 

vertices in a k  - regular graph with diameter 2. We will 

prove that 
2

5( 1) 1kk n k     and determine kn  for some 

special values of k .  

     Keywords: k - regular graph, strongly regular graph, 

diameter. 

 

Introduction 
 

     A graph G  is a pair ( , )V E , where E  is a set of pairs of 

V  (V  is called vertex - set). The neighborhood of a vertex 

v  denoted by ( )N v , i.e.,  ( ) = : ( , )N v u V u v E  . Note that 

( )v N v . The size of ( )N v  is called the degree of v , 

deg( )v . The graph G  has diameter 2 if it is not the complete 

graph and for each two vertices ,u v V  either ( , )u v  is an 

edge of G , or ( ) ( )N u N v    (or both). G  is said to be 

strongly regular if there are also integers   and   such that: 

every two adjacent vertices have   common neighbours and 

every two non-adjacent vertices have   common 

neighbours. A graph of this kind is sometimes said to be an 

( , , , )SRG n k   [1]. Example, 5C  is in (5, 2,0,1)SRG . Petersen 

Graph is in (10,3,0,1)SRG  and it is composed of two cycles 

1 2 3 4 5( , , , , )a a a a a  and 1 2 3 4 5( , , , , )b b b b b , it is added by edges 

1 1 2 3 3 5 4 2 5 4( , ), ( , ), ( , ), ( , ), ( , )a b a b a b a b a b . 

       kn  denotes the maximum number of vertices in a k  - 

regular graph with diameter 2. In this paper, we will prove 

that 
2

5( 1) 1kk n k    and determine kn  for some special 

values of k . 

 

2  Main Results 
In [4], Zoltan Furedi evaluated for the smallest 

number edges of a k  - regular graph with diameter 2. 

In [3], the authors show that with the exception of 

4C , there are no graphs of diameter 2, of maximum degree 

d , and with 
2

d  vertices . 

 

Theorem 1 (Paul Erdös,Siemion Fajtlowicz,Alan J . 

Hoffman)  If G  is a graph of diameter 2 with 
2

=n d  

( 2d  ) vertices and maximum degree d , then G  is 

isomorphic to a four-element cycle.  

 

In our papers, we will estimate the maximum 

number of vertices in a k  - regular graph with diameter 2. 

We prove that 1 5kn k   by constructing a graph 

have 5k  vertices, 1k   - regular, ( 1) = ( , )P k V E  with 

diameter 2 and 

       =1

=

k

i

i

V X ,  5 4 5 3 5 2 5 1 5= , , , , .i i i i i iX a a a a a     

       When = 2k , (3)P  is a Petersen graph. 

      E  have edges: 

(i) 5 4 5 3 5 3 5 2 5 2 5 1 5 1 5 5 5 4( , ), ( , ), ( , ), ( , ), ( , )i i i i i i i i i ia a a a a a a a a a       

= 1,i k .  

(ii) 5 4 5 4( , )i ja a  , 5 3 5 1( , )i ja a  , 5 2 5 3( , )i ja a  , 5 1 5( , )i ja a , 

5 5 2( , )i ja a  , = 1,i j k , <i j .  

 Obviously, ( 1)P k   is the graph with 5k  vertices 

and each vertex in the set iX  connects to only vertex in the 

set jX  ( i j ) and 2 edges with the same vertex set, so the 

degree of each vertex of ( 1)P k   is 1k  . Here, we will 

prove that ( 1)P k   is the graph with diameter 2. 

 

Lemma 1 ( 1)P k   is a 1k   - regular graph on 5k  

vertices with diameter 2.  

 

Proof. Let ,u v  be two non-adjacent vertices in the set V . 

We prove that ( ) ( )N u N v   . 

We consider two cases: 

+ Case 1: i  such that , iu v X . 
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    If 5 4= iu a  , then v  is in  5 2 5 1,i ia a   (Because ,u v  are 

non-adjacent and  5 4 5 2 5 3( ) ( ) =i i iN a N a a   , 

 5 4 5 1 5( ) ( ) =i i iN a N a a  ). 

Thus, 5 4= iu a   satifies the condition. 

Similar to the cases: 5 3 5 2 5 1 5= , , ,i i i iu a a a a   . 

+ Case 2: <i j  such that iu X  and jv X . 

If 5 4= iu a  , then 5 3 5 2 5 1 5= , , ,j j j jv a a a a   , 

When 5 3= jv a  , we obtain  5 4( ) ( ) = jN u N v a  , 

When 5 2= jv a  , we obtain  5( ) ( ) = iN u N v a , 

When 5 1= jv a  , we obtain  5 3( ) ( ) = iN u N v a  , 

When 5= jv a , we obtain  5 4( ) ( ) = jN u N v a  , 

Thus, 5 4= iu a   satifies the condition. 

Similar to the cases: 5 3 5 2 5 1 5= , , ,i i i iu a a a a   . 

 Hence, we have ( ) ( )N u N v    in all cases. 

 

 
 

Figure 1. Edges of Xi and Xj 

 

      First, we construct the structure of V  in graph G  with 

diameter 2 in the following lemma: 

 

Lemma 2  Suppose = ( , )G V E  is a graph with diameter 2. 

Let x V  be an arbitrary vertex and 

 1 2( ) = , , , kN x y y y . We have  

  1 2= ( ) ( ) ( ) ( )kV x N x N y N y N y      

Proof. Obviously, 

  1 2( ) ( ) ( ) ( )kx N x N y N y N y V      . 

Suppose 

  1 2( ) ( ) ( ) ( )ky V x N x N y N y N y        . 

     Because ( )y N x , y  is not adjacent to x , G  have 

diameter 2 so that ( ) ( )w N x N y  . Because w  is adjacent 

to x ,  1 2( ) = , , , kw N x y y y  and ( )y N w , this is a 

contradiction (

=1

( )

k

i

i

y N y ). 

Thus, 

  1 2= ( ) ( ) ( ) ( )kV x N x N y N y N y     . 

 

 
 

Figure 2. Vertices of k-regular graph with diameter 2. 
 

We have a theorem to estimate kn  as follow: 

 

Theorem 2  When 
*k  , we have  
25( 1) 1kk n k    . 

Proof. By Theorem 1, we have ( )P k  is a k  - regular graph 

with diameter 2, i.e. 5( 1)kn k  . 

  On the other hand, by Theorem 2 we have 

       

   

1 2

2

=1

| |= ( ) ( ( ) ) ( ( ) ) ( ( ) )

( ) | ( ) |= 1 ( 1) = 1

k

k

i

i

V x N x N y x N y x N y x

x N x N y x k k k k

       

       

.  

     In [2], Hoffman and Singleton proved this result as 

follow:  

Theorem 3 
2( 1; ;0;1)G r r  exists when = 2;3;7r  and 

possible = 57r . (50;7;0;1)G  graph, Hoffman Singleton 

graph, if there exists, it is unique.  

 

     By estimating kn  in Theorem 2, we have 
2= 1kn k   for 

= 2,3,7n , and if there exists Hoffman Singleton graph, then 
2

57 = 57 1n  . In next Theorem, we determine 4n .  

Theorem 4 2 3= 5, = 10n n  and 4 = 15n .  
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Proof. By Theorem 2, we obtain 
2

25 = 5(2 1) 2 1 = 5n   . Hence, 2 = 5n . And (1)P  is a 

2 - regular graph with diameter 2. 

  By Theorem 2, we have 
2

210 = 5(3 1) 3 1 = 10n   , 

thus 3 = 10n . And (2)P  is a 3 - regular graph with diameter 

2. 

    By Theorem 2, we obtain 
2

215 = 5(4 1) 4 1 = 17n   . 

   We will prove that 4 17n   and 4 16n  . 

 1. Prove that 4 17n  :  

    Indeed, suppose 4 = 17n , thus there exists = ( , )G V E  so 

that | |= 17V  and G  is a 4 - regular graph with diameter 2. 

    Let vertex x  be fix in V . Because deg( ) = 4x , 

 1 2 3 4( ) = , , ,N x y y y y . 

    By theorem 2, we have  
=1

= ( )

k

i

i

V x N x X
 
  
 
 

, where 

 = ( ) ( ( ))i iX N y x N x  . 

   If ( , )i jy y E  (where i j ). 

   Without loss of generality, suppose 1y  is adjacent to 2y . 

   Hence,  1 2( ) = , , ,N y x y a b ,  2 1( ) = , , ,N y x y c d . 

   Thus,    1 2, , ,X a b X c d  . Hence, 1| | 2X  , 

2| | 2X  . Obviously, 3| | 3X  , 4| | 3X  . 

    Finally, | | 1 4 2 2 3 3 = 15V      . This is a 

contradiction ( | |= 17V ). 

    Thus, iy  is not adjacent to jy  (where i j ). 

    So that  = ( )i iX N y x  and | |= 3iX . 

4

=1

17 =| | 1 4 | |= 5 3.4 = 17i

i

V X    . 

   So the equal sign must occur in the above inequality. 

Hence, =i jX X  . 

    On other hand, | |= 3iX . Hence  3 2 3 1 3= , ,i i i iX z z z   

where = 1,4i . 

       
 

   +) We observe that if iu X , then u  is not adjacent to jy  

( j i ) and x . 

    We prove that iu X , then there exists unique edge of 

vertex u  and one vertex in jX  ( i j ). Without loss of 

generality, we consider the case = 1, = 2i j . 

    Indeed, if u  is adjacent to two vertices 2,v w X , then 

 1( ) = , , ,N u y v w a  where a  is a vertex. 

    Because u  is not adjacent to two vertices 3 4,y y , we have 

 3 4( ) ( ) =a N y N y x   (vertices 1 3 4, , ( ), ( )y v w N y N y ). 

So that =a x  and u  is adjacent to x . 

    Hence,  1 2 3 4, , , , ( ) | ( ) | 5u y y y y N x N x   

    (A contradiction with | ( ) |= 4N x ). 

     If u  is not adjacent to 2y , 2( ) ( )N u N y    and so 

that u  must be adjacent to a vertex in 

 2 4 5 6( ) = , , ,N y x z z z . But u  is not adjacent to x , u  is 

adjacent to a vertex in  2 4 5 6= , ,X z z z . 

     Finally, if iu X , then u  is adjacent to only one vertex 

in jX  ( j i ).  (1) 

   +) We will prove that if , iu v X  and u v , then ,u v  is 

non-adjacent. 

   Without loss of gerenality, we only consider the case =1i . 

   By (1) and (2) u  must only be adjacent to the vertices 

2a X , 3b X , 4c X  

    Hence  1, , , , ( )v y a b c N u , | ( ) | 5N u  . A contradiction 

with | ( ) |= 4N u . 

    Finally, two vertices in iX  are non - adjacent.  (2) 

      +) We consider vertex 1z : 

      By (1) and (2), we have  1 1( ) = , , ,N z y a b c  where 

2 3 4, ,a X b X c X   . Without loss of generality, we 

consider the case 4 7 10= , = , =a z b z c z  (if not we can 

renumber the elements in iX , = 2,3,4i ). 

      Hence  1 1 4 7 10( ) = , , ,N z y z z z . 

     +) We consider vertex 2z : 

      2 1( ) = , , ,N z y a b c  where 2 3 4, ,a X b X c X   . We 

obtain 4a z  because if 4=a z , then 4z  is adjacent to two 

vertices 1 2,z z  of 1X  (a contradiction). Therefore 2z  is 

adjacent to 5 6,z z . Without loss of generality, we only 

consider the case 5=a z . Similarly, 8=b z , 11=c z . 

       Finally,  2 1 5 8 11( ) = , , ,N z y z z z . 

       +) The same with vertex 3z , we have 

 3 1 6 9 12( ) = , , ,N z y z z z . 

       +) We consider vertex 4z :  4 2 1( ) = , , ,N z y z a b . 
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4z  is adjacent to 1z , i.e. 4z  is not adjacent to 

2 3 3 4, , , ,z z y y x . 

 3 7 8 9( ) = , , ,N y x z z z ,  4 10 11 12( ) = , , ,N y x z z z . 

     Hence 
4 8 12

4 9 11

is adjacent to ,

is adjacent to ,

z z z

z z z





 

     Without loss of generality, we consider the case 4z  is 

adjacent to 8 12,z z . 

     So that  4 2 1 8 12( ) = , , ,N z y z z z . 

   + We consider vertex 5z :  5 2 2( ) = , , ,N z y z a b . 

     5z  is not adjacent to 1 3 3 4, , , ,z z y y x  so that 

5 7 12

4 12

5 10 9

is adjacent to ,

(A contradiction, because is adjacent to )

is adjacent ,

z z z

z z

z z z






 

Therefore  5 2 2 9 10( ) = , , ,N z y z z z . 

     + We consider vertex 6z :  6 2 3( ) = , , ,N z y z a b . 

     6z  is not adjacent to 8 9,z z . Because 8z  is adjacent to 

4z , 9z  is adjacent to 5z , 6z  is adjacent to 7z . Similarly, 6z  

is adjacent 11z . 

    Consequently,  6 2 2 7 11( ) = , , ,N z y z z z . 

     + We consider vertex 7z :  7 3 1 6( ) = , , ,N z y z z a . 

     Where 4a X . Because 7z  is adjacent to 2 3 4 5, , ,z z z z  

and  2 1 5 8 11( ) = , , ,N z y z z z , we have 11=a z .  

So that  7 3 1 6 11( ) = , , ,N z y z z z . 

     On other hand, we have  3 1 6 9 12( ) = , , ,N z y z z z . 

     Hence 3 7( ) ( ) =N z N z  , but 3 7,z z  are non-adjacent. 

A contradiction with G  have diameter 2. 

      There doesn’t exist 4 - regular, 2 - diameter graph with 

17 edges. 

 

 2. Prove that 4 16n  : 

     Suppose 4 = 16n , hence there exists a graph = ( , )G V E  

with 2 - diameter, 4 - regular and | |= 16V . 

     Because G  is a 4 - regular graph, by Theorem 2: 

 
4

=1

= ( ( )) ( )i

i

V N y x N x  ,  

    where  1 2 3 4( ) = , , ,N x y y y y  and  ( ) = , , ,iN y x a b c . 

     If  , ,jy a b c  (where i j ), prove that similarly, we 

have | | 15V   (A contradiction with | |= 16V ). 

    Consequently, iy  is not adjacent to jy  (where i j ). 

    Let  = ( ) ( ( ))i iX N y x N x  . As above, we have 

| |= 3iX  for all = 1,4i . 

    Let  = max | || , , =1,4i jX X i j i j   . 

    If = 0 , then | |= 0i jX X  for all i j . Hence, 

=i jX X   for all i j . 

     On other hand,  
4

=1

= ( ) ( )i

i

V X x N x  . Therefore, we 

have: 
4 4

=1=1

| |=| | 1 4 = | | 5 = 4.3 5 = 17i i

ii

V X X    .  

(A contradiction with | |= 16V ). 

        So that 1  . Suppose 3 4| |=X X  . 

4

1 2 3 4

=1

3 4 3 4 3 4

16 =| |=| | 5 | | | | 5

11 | |= 11 | | | | | |= 17

i

i

V X X X X X

X X X X X X 





    

      

, 

hence 1  . 

     Finally, =1  and the equal sign must occur in the 

inequation: 

      So that 1 2 3 4( ) ( ) =X X X X     and 1 2 =X X  , 

3 4| |= 1X X . Thus,  1 1 2 3= , ,X z z z ,  2 4 5 6= , ,X z z z , 

 3 7 8 9= , ,X z z z ,  4 9 10 11= , ,X z z z . 

 
Figure 3. When n4=16. 

 

     + We consider vertex 9z : we have  9 3 4( ) = , , ,N z y y a b . 

      Because 9z  is not adjacent to 1y , 9z  is adjacent to 

1 2 3, ,z z z . Without loss of generality, we consider the case 

which 9z  is adjacent to 14z . 

       Similarly, 9z  is adjacent to 4z . 

       Consequently,  9 3 3 1 4( ) = , , ,N z y y z z . 

     + We consider vertex 2z :  2 1( ) = , , ,N z y a b c . 

      Because 2z  is not adjacent to 9z  (where 

 9 3 4 1 4( ) = , , ,N z y y z z ), we obtain    1 4, , ,a b c z z   . 
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      Suppose 2z  is adjacent to 1z , we have 2z  is not 

adjacent to 2 3 4, ,y y y . 

 2 4 5 6( ) = , , ,N y x z z z ,  3 7 8 9( ) = , , ,N y x z z z , 

 4 9 10 11( ) = , , ,N y x z z z . 

      Hence 2z  will be adjacent to one of three vertices 

4 5 6, ,z z z , this vertex is called by a  , 2z  is adjacent to one 

of three vertices 7 8 9, ,z z z , this vertex is called by b  ( 9b z  

because 2 9( )z inN z  ). Similarly, 2z  is adjacent to one of two 

vertices 10 11,z z  and this vertex is called by c . Therefore, we 

obtain  1 1 2 2, , , , ( ) | ( ) | 5y z a b c N z N z  . 

      (A contradiction with 2| ( ) |= 4N z ) 

     We have 2z  is not adjacent to 1z , hence 2z  is adjacent to 

4z . 

      Because 2z  is not adjacent to 3y , 2z  is adjacent to one 

of three vertices 7 8 9, ,z z z . Therefore, it is adjacent to one of 

two vertices 7 8,z z . Without loss of generality, we consider 

the case which 2z  is adjacent to 7z . Similarly, 2z  is 

adjacent to 10z . Consequently,  2 1 4 7 10( ) = , , ,N z y z z z . 

     + We consider vertex 3z : 

     Similarly as 2z , 3z  is adjacent to 4z  and 3z  is adjacent 

to one of two vertices 7 8,z z . 

     Case 3z  is adjacent to 7z : 

     Because 7z  is not adjacent to 4y , 7z  is adjacent to one 

of two vertices 10 11,z z , this vertex is called by a . 

     7z  is adjacent to one of three vertices 4 5 6, ,z z z , called by 

b . 

   
 2 3 2 7 7, , , , ( ) | ( ) | 5y z a b z N z N z   .  

       (A contradiction with 7| ( )) |= 4N z ) 

    Consequently, 3z  must be adjacent to 8z . Similarly, 3z  

is adjacent to 11z . 

    Finally,  3 1 4 8 11( ) = , , ,N z y z z z . 

   + We consider vertex 5z : 

    Similarly as 2z , we obtain 5z  is adjacent to 1z  and 6z  is 

adjacent to 1z . 

    Because 5z  is not adjacent to 3y , 5z  is adjacent to one of 

two vertices 7 8,z z . 

   Case 5z  is adjacent to 7z : 

    5z  is adjacent to 11z  (Because 5z  is not adjacent to 

3 4,z y ) 

    Case 5z  is adjacent to 8z : 

   5z  is adjacent to 10z  (Because 5z  is not adjacent to 

2 4,z y ) 

    Without loss of generality, we consider the case which 5z  

is adjacent to 7 11,z z  

     Therefore 6z  is adjacent to 8 10,z z . 

     Consequently,  5 2 1 7 11( ) = , , ,N z y z z z  and 

 6 2 1 8 10( ) = , , ,N z y z z z . 

    +) We consider vertex 7z : 

     We have  7 3 2 5( ) = , , ,N z y z z a . 

     Because 7z  is not adjacent to 4y , 

 4 9 10 11( ) = , , ,N y x z z z ,    10 11,a z z   . 

     Because 7z  is not adjacent to 3z  

(  3 1 4 8 11( ) = , , ,N z y z z z ),    8 11,a z z   . 

     So that 11=a z . 

     Hence  7 3 2 5 11( ) = , , ,N z y z z z . 

Because 7z  is not adjacent to 6z  

(  6 2 1 8 10( ) = , , ,N z y z z z ), 6 7( ) ( ) =N z N z  . A 

contradiction with diameter of G =2. 

Consequently, 4 16n  . 

Finally, 4 15n   and 4 = 15n . We have (3)P  with 

| |= 15V , and (3)P  is 4-regular graph with diameter 2.  

 

3. Conclusion 
 In this paper, we define kn  which is maximum 

number of vertices in a k  - regular graph with diameter 2, 

and we estimate kn  for all *k   and determine kn  in case 

= 2,3, 4k . 
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