

K-REGULAR GRAPH WITH DIAMETER 2

Hoa Vu Dinh, Department of Information Technology, Hanoi University of Education; Do MinhTuan, Department of Natural Sciences, Nam Dinh Teacher Training College.

Abstract

A regular graph with vertices of degree k is called a k - regular graph or regular graph of deree k. G is said to be strongly regular if there are also integers τ and θ such that: every two adjacent vertices have τ common neighbours and every two non-adjacent vertices have θ common neighbours. A graph of this kind is sometimes said to be an $SRG(n,k,\tau,\theta)$. The length $\max_{(u,v)} d(u,v)$ of the "longest shortest path" (i.e., the longest graph geodesic) between any two vertices (u,v) of a graph, where d(u,v) is a graph distance. n_k denotes the maximum number of

vertices in a k - regular graph with diameter 2. We will prove that $5(k-1) \le n_k \le k^2 + 1$ and determine n_k for some special values of k.

Keywords: k - regular graph, strongly regular graph, diameter.

Introduction

A graph *G* is a pair (V, E), where *E* is a set of pairs of *V* (*V* is called vertex - set). The neighborhood of a vertex *v* denoted by N(v), i.e., $N(v) = \{u \in V : (u, v) \in E\}$. Note that $v \notin N(v)$. The size of N(v) is called the degree of *v*, deg(*v*). The graph *G* has diameter 2 if it is not the complete graph and for each two vertices $u, v \in V$ either (u, v) is an edge of *G*, or $N(u) \cap N(v) \neq \emptyset$ (or both). *G* is said to be strongly regular if there are also integers τ and θ such that: every two adjacent vertices have τ common neighbours and every two non-adjacent vertices have θ common neighbours. A graph of this kind is sometimes said to be an $SRG(n,k,\tau,\theta)$ [1]. Example, C_5 is in SRG(5,2,0,1). Petersen Graph is in SRG(10,3,0,1) and it is composed of two cycles (a_1,a_2,a_3,a_4,a_5) and (b_1,b_2,b_3,b_4,b_5) , it is added by edges $(a_1,b_1), (a_2,b_3), (a_3,b_5), (a_4,b_2), (a_5,b_4)$.

 n_k denotes the maximum number of vertices in a k-regular graph with diameter 2. In this paper, we will prove that $5(k-1) \le n_k \le k^2 + 1$ and determine n_k for some special values of k.

2 Main Results

In [4], Zoltan Furedi evaluated for the smallest number edges of a k - regular graph with diameter 2.

In [3], the authors show that with the exception of C_4 , there are no graphs of diameter 2, of maximum degree d, and with d^2 vertices.

Theorem 1 (Paul Erdös, Siemion Fajtlowicz, Alan J.

Hoffman) If G is a graph of diameter 2 with $n = d^2$ ($d \ge 2$) vertices and maximum degree d, then G is isomorphic to a four-element cycle.

In our papers, we will estimate the maximum number of vertices in a k - regular graph with diameter 2.

We prove that $n_{k+1} \ge 5k$ by constructing a graph have 5k vertices, k+1 - regular, P(k+1) = (V, E) with diameter 2 and

$$V = \bigcup_{i=1}^{n} X_{i}, \ X_{i} = \{a_{5i-4}, a_{5i-3}, a_{5i-2}, a_{5i-1}, a_{5i}\}.$$

When k = 2, P(3) is a Petersen graph. *E* have edges:

(i) $(a_{5i-4}, a_{5i-3}), (a_{5i-3}, a_{5i-2}), (a_{5i-2}, a_{5i-1}), (a_{5i-1}, a_{5i}), (a_{5i}, a_{5i-4})$ $\forall i = \overline{1, k}.$ (ii) $(a_{5i-4}, a_{5i-3}), (a_{5i-3}, a_{5i-2}), (a_{5i-2}, a_{5i-1}), (a_{5i-1}, a_{5i}), (a_{5i}, a_{5i-4})$

(ii) (a_{5i-4}, a_{5j-4}) , (a_{5i-3}, a_{5j-1}) , (a_{5i-2}, a_{5j-3}) , (a_{5i-1}, a_{5j}) ,

 $(a_{5i}, a_{5j-2}) \quad \forall i, j = \overline{1, k}, i < j.$

Obviously, P(k+1) is the graph with 5k vertices and each vertex in the set X_i connects to only vertex in the set X_j $(i \neq j)$ and 2 edges with the same vertex set, so the degree of each vertex of P(k+1) is k+1. Here, we will prove that P(k+1) is the graph with diameter 2.

Lemma 1 P(k+1) is a k+1 - regular graph on 5k vertices with diameter 2.

Proof. Let u, v be two non-adjacent vertices in the set V. We prove that $N(u) \cap N(v) \neq \emptyset$. We consider two cases:

+ **Case 1**: $\exists i$ such that $u, v \in X_i$.

If $u = a_{5i-4}$, then v is in $\{a_{5i-2}, a_{5i-1}\}$ (Because u, v are non-adjacent and $N(a_{5i-4}) \cap N(a_{5i-2}) = \{a_{5i-3}\}$, $N(a_{5i-4}) \cap N(a_{5i-1}) = \{a_{5i}\}$). Thus, $u = a_{5i-4}$ satifies the condition. Similar to the cases: $u = a_{5i-3}, a_{5i-2}, a_{5i-1}, a_{5i}$. + **Case 2**: $\exists i < j$ such that $u \in X_i$ and $v \in X_j$. If $u = a_{5i-4}$, then $v = a_{5j-3}, a_{5j-2}, a_{5j-1}, a_{5j}$, When $v = a_{5j-3}$, we obtain $N(u) \cap N(v) = \{a_{5j-4}\}$, When $v = a_{5j-2}$, we obtain $N(u) \cap N(v) = \{a_{5i}\}$, When $v = a_{5j-1}$, we obtain $N(u) \cap N(v) = \{a_{5i-3}\}$, When $v = a_{5j}$, we obtain $N(u) \cap N(v) = \{a_{5j-4}\}$, Thus, $u = a_{5i-4}$ satifies the condition. Similar to the cases: $u = a_{5i-3}, a_{5i-2}, a_{5i-1}, a_{5i}$.

Hence, we have $N(u) \cap N(v) \neq \emptyset$ in all cases.

Figure 1. Edges of X_i and X_j

First, we construct the structure of V in graph G with diameter 2 in the following lemma:

Lemma 2 Suppose G = (V, E) is a graph with diameter 2. Let $x \in V$ be an arbitrary vertex and $N(x) = \{y_1, y_2, \dots, y_k\}$. We have $V = \{x\} \cup N(x) \cup N(y_1) \cup N(y_2) \cup \dots \cup N(y_k)$ Proof. Obviously,

$$\left(\left\{ x \right\} \cup N(x) \cup N(y_1) \cup N(y_2) \cup \cdots \cup N(y_k) \right) \subset V.$$

Suppose

 $\exists y \in V - \left(\left\{ x \right\} \cup N(x) \cup N(y_1) \cup N(y_2) \cup \cdots \cup N(y_k) \right).$

Because $y \notin N(x)$, y is not adjacent to x, G have diameter 2 so that $w \in N(x) \cap N(y)$. Because w is adjacent to x, $w \in N(x) = \{y_1, y_2, \dots, y_k\}$ and $y \in N(w)$, this is a

contradiction
$$(y \notin \bigcup_{i=1}^{k} N(y_i))$$
.
Thus,
 $V = \{x\} \cup N(x) \cup N(y_1) \cup N(y_2) \cup \dots \cup N(y_k)$.

Figure 2. Vertices of k-regular graph with diameter 2.

We have a theorem to estimate n_k as follow:

Theorem 2 When $k \in \square^*$, we have $5(k-1) \le n_k \le k^2 + 1$.

Proof. By Theorem 1, we have P(k) is a k - regular graph with diameter 2, i.e. $n_k \ge 5(k-1)$.

On the other hand, by Theorem 2 we have

$$|V| = \left| \{x\} \cup N(x) \cup (N(y_1) - \{x\}) \cup (N(y_2) - \{x\}) \cup \dots \cup (N(y_k) - \{x\}) \right|$$

$$\leq \left| \{x\} + |N(x)| + \sum_{i=1}^k |N(y_i) - \{x\} |= 1 + k + k(k-1) = k^2 + 1$$

In [2], Hoffman and Singleton proved this result as follow:

Theorem 3 $G(r^2 + 1; r; 0; 1)$ exists when r = 2; 3; 7 and possible r = 57. G(50; 7; 0; 1) graph, Hoffman Singleton graph, if there exists, it is unique.

By estimating n_k in Theorem 2, we have $n_k = k^2 + 1$ for n = 2, 3, 7, and if there exists Hoffman Singleton graph, then $n_{57} = 57^2 + 1$. In next Theorem, we determine n_4 .

Theorem 4 $n_2 = 5, n_3 = 10$ and $n_4 = 15$.

International Journal of Advanced Computer Technology (IJACT)

Proof. By Theorem 2, we obtain

 $5 = 5(2-1) \le n_2 \le 2^2 + 1 = 5$. Hence, $n_2 = 5$. And P(1) is a 2 - regular graph with diameter 2.

By Theorem 2, we have $10 = 5(3-1) \le n_2 \le 3^2 + 1 = 10$, thus $n_3 = 10$. And P(2) is a 3 - regular graph with diameter 2.

By Theorem 2, we obtain $15 = 5(4-1) \le n_2 \le 4^2 + 1 = 17$.

We will prove that $n_4 \neq 17$ and $n_4 \neq 16$.

1. Prove that $n_4 \neq 17$:

Indeed, suppose $n_4 = 17$, thus there exists G = (V, E) so that |V| = 17 and G is a 4 - regular graph with diameter 2.

Let vertex x be fix in V. Because deg(x) = 4, $N(x) = \{y_1, y_2, y_3, y_4\}$.

By theorem 2, we have $V = \{x\} \cup N(x) \cup \left(\bigcup_{i=1}^{k} X_i\right)$, where

 $X_i = N(y_i) - \left(\left\{x\right\} \cup N(x)\right) \,.$

If $(y_i, y_j) \in E$ (where $i \neq j$).

Without loss of generality, suppose y_1 is adjacent to y_2 . Hence, $N(y_1) = \{x, y_2, a, b\}$, $N(y_2) = \{x, y_1, c, d\}$.

Thus, $X_1 \subset \{a, b\}, X_2 \subset \{c, d\}$. Hence, $|X_1| \le 2$, $|X_2| \le 2$. Obviously, $|X_3| \le 3$, $|X_4| \le 3$.

Finally, $|V| \le 1 + 4 + 2 + 2 + 3 + 3 = 15$. This is a contradiction (|V| = 17).

Thus, y_i is not adjacent to y_i (where $i \neq j$).

So that
$$X_i = N(y_i) - \{x\}$$
 and $|X_i| = 3$.
 $17 = |V| \le 1 + 4 + \sum_{i=1}^{4} |X_i| = 5 + 3.4 = 17$.

So the equal sign must occur in the above inequality. Hence, $X_i \cap X_j = \emptyset$.

On other hand, $|X_i| = 3$. Hence $X_i = \{z_{3i-2}, z_{3i-1}, z_{3i}\}$ where $i = \overline{1, 4}$.

+) We observe that if $u \in X_i$, then u is not adjacent to y_j $(j \neq i)$ and x.

We prove that $u \in X_i$, then there exists unique edge of vertex u and one vertex in X_j $(i \neq j)$. Without loss of generality, we consider the case i = 1, j = 2.

Indeed, if *u* is adjacent to two vertices $v, w \in X_2$, then $N(u) = \{y_1, v, w, a\}$ where *a* is a vertex.

Because *u* is not adjacent to two vertices y_3, y_4 , we have $a \in N(y_3) \cap N(y_4) = \{x\}$ (vertices $y_1, v, w \notin N(y_3), N(y_4)$). So that a = x and *u* is adjacent to *x*.

Hence, $\{u, y_1, y_2, y_3, y_4\} \subset N(x) \Longrightarrow |N(x)| \ge 5$

(A contradiction with |N(x)| = 4).

If *u* is not adjacent to y_2 , $N(u) \cap N(y_2) \neq \emptyset$ and so that *u* must be adjacent to a vertex in $N(y_2) = \{x, z_4, z_5, z_6\}$. But *u* is not adjacent to *x*, *u* is adjacent to a vertex in $X_2 = \{z_4, z_5, z_6\}$.

Finally, if $u \in X_i$, then u is adjacent to only one vertex in X_i ($j \neq i$). (1)

+) We will prove that if $u, v \in X_i$ and $u \neq v$, then u, v is non-adjacent.

Without loss of gerenality, we only consider the case i = 1. By (1) and (2) u must only be adjacent to the vertices $a \in X_2$, $b \in X_3$, $c \in X_4$

Hence $\{v, y_1, a, b, c\} \subset N(u)$, $|N(u)| \ge 5$. A contradiction with |N(u)| = 4.

Finally, two vertices in X_i are non - adjacent. (2)

+) We consider vertex z_1 :

By (1) and (2), we have $N(z_1) = \{y_1, a, b, c\}$ where $a \in X_2, b \in X_3, c \in X_4$. Without loss of generality, we consider the case $a = z_4, b = z_7, c = z_{10}$ (if not we can renumber the elements in X_i , i = 2, 3, 4).

Hence $N(z_1) = \{y_1, z_4, z_7, z_{10}\}.$

+) We consider vertex z_2 :

 $N(z_2) = \{y_1, a, b, c\}$ where $a \in X_2, b \in X_3, c \in X_4$. We obtain $a \neq z_4$ because if $a = z_4$, then z_4 is adjacent to two vertices z_1, z_2 of X_1 (a contradiction). Therefore z_2 is adjacent to z_5, z_6 . Without loss of generality, we only consider the case $a = z_5$. Similarly, $b = z_8, c = z_{11}$.

Finally, $N(z_2) = \{y_1, z_5, z_8, z_{11}\}$.

+) The same with vertex z_3 , we have $N(z_3) = \{y_1, z_6, z_9, z_{12}\}$.

+) We consider vertex z_4 : $N(z_4) = \{y_2, z_1, a, b\}$.

International Journal of Advanced Computer Technology (IJACT)

 z_4 is adjacent to z_1 , i.e. z_4 is not adjacent to z_2, z_3, y_3, y_4, x .

$$N(y_3) = \{x, z_7, z_8, z_9\}, N(y_4) = \{x, z_{10}, z_{11}, z_{12}\}.$$

Hence $\begin{bmatrix} z_4 \text{ is adjacent to } z_8, z_{12} \end{bmatrix}$

$$z_4$$
 is adjacent to z_9, z_{11}

Without loss of generality, we consider the case z_4 is adjacent to z_8, z_{12} .

So that $N(z_4) = \{y_2, z_1, z_8, z_{12}\}$.

- + We consider vertex z_5 : $N(z_5) = \{y_2, z_2, a, b\}$.
 - z_5 is not adjacent to z_1, z_3, y_3, y_4, x so that
 - z_5 is adjacent to z_7, z_{12}
 - (A contradiction, because z_4 is adjacent to z_{12})
 - z_5 is adjacent z_{10}, z_9

Therefore $N(z_5) = \{y_2, z_2, z_9, z_{10}\}.$

+ We consider vertex z_6 : $N(z_6) = \{y_2, z_3, a, b\}$.

 z_6 is not adjacent to z_8, z_9 . Because z_8 is adjacent to z_4 , z_9 is adjacent to z_5 , z_6 is adjacent to z_7 . Similarly, z_6 is adjacent z_{11} .

Consequently, $N(z_6) = \{y_2, z_2, z_7, z_{11}\}$.

+ We consider vertex z_7 : $N(z_7) = \{y_3, z_1, z_6, a\}$.

Where $a \in X_4$. Because z_7 is adjacent to z_2, z_3, z_4, z_5 and $N(z_2) = \{y_1, z_5, z_8, z_{11}\}$, we have $a = z_{11}$.

So that $N(z_7) = \{y_3, z_1, z_6, z_{11}\}.$

On other hand, we have $N(z_3) = \{y_1, z_6, z_9, z_{12}\}$.

Hence $N(z_3) \cap N(z_7) = \emptyset$, but z_3, z_7 are non-adjacent. A contradiction with *G* have diameter 2.

There doesn't exist 4 - regular, 2 - diameter graph with 17 edges.

2. Prove that $n_4 \neq 16$:

Suppose $n_4 = 16$, hence there exists a graph G = (V, E)with 2 - diameter, 4 - regular and |V| = 16.

Because G is a 4 - regular graph, by Theorem 2:

$$V = \left(\bigcup_{i=1}^{4} N(y_i)\right) \cup \left\{x\right\} \cup N(x) ,$$

where $N(x) = \{y_1, y_2, y_3, y_4\}$ and $N(y_i) = \{x, a, b, c\}$.

If $y_j \in \{a, b, c\}$ (where $i \neq j$), prove that similarly, we have $|V| \leq 15$ (A contradiction with |V| = 16).

Consequently, y_i is not adjacent to y_i (where $i \neq j$).

Let
$$X_i = N(y_i) - (\{x\} \cup N(x))$$
. As above, we have
 $|X_i| = 3$ for all $i = \overline{1, 4}$.
Let $\alpha = \max\{|X_i \cap X_j| | i \neq j, i, j = \overline{1, 4}\}$.
If $\alpha = 0$, then $|X_i \cap X_j| = 0$ for all $i \neq j$. Hence,

 $X_i \cap X_j = \emptyset$ for all $i \neq j$.

On other hand, $V = (\bigcup_{i=1}^{4} X_i) \cup \{x\} \cup N(x)$. Therefore, we

have:

$$|V| = |\bigcup_{i=1}^{4} X_i| + 1 + 4 = \sum_{i=1}^{4} |X_i| + 5 = 4.3 + 5 = 17.$$

(A contradiction with $|V| = 16$).
So that $\alpha \ge 1$. Suppose $|X_3 \cap X_4| = \alpha$.

$$16 = |V| = |\bigcup_{i=1}^{4} X_i| + 5 \le |X_1 \cup X_2| + |X_3 \cup X_4| + 5$$

$$\le 11 + |X_3 \cup X_4| = 11 + |X_3| + |X_4| - |X_3 \cap X_4| = 17 - \alpha$$

hence $\alpha \le 1$.

Finally, $\alpha = 1$ and the equal sign must occur in the inequation:

So that $(X_1 \cup X_2) \cap (X_3 \cup X_4) = \emptyset$ and $X_1 \cap X_2 = \emptyset$, $|X_3 \cap X_4| = 1$. Thus, $X_1 = \{z_1, z_2, z_3\}$, $X_2 = \{z_4, z_5, z_6\}$, $X_3 = \{z_7, z_8, z_9\}$, $X_4 = \{z_9, z_{10}, z_{11}\}$.

Figure 3. When n₄=16.

+ We consider vertex z_9 : we have $N(z_9) = \{y_3, y_4, a, b\}$.

Because z_9 is not adjacent to y_1 , z_9 is adjacent to z_1, z_2, z_3 . Without loss of generality, we consider the case which z_9 is adjacent to z_{14} .

Similarly, z_9 is adjacent to z_4 .

Consequently, $N(z_9) = \{y_3, y_3, z_1, z_4\}.$

+ We consider vertex z_2 : $N(z_2) = \{y_1, a, b, c\}$.

Because z_2 is not adjacent to z_9 (where $N(z_9) = \{y_3, y_4, z_1, z_4\}$), we obtain $\{a, b, c\} \cap \{z_1, z_4\} \neq \emptyset$.

ISSN:2319-7900

Suppose z_2 is adjacent to z_1 , we have z_2 is not adjacent to y_2, y_3, y_4 .

$$\begin{split} N(y_2) &= \left\{ x, z_4, z_5, z_6 \right\}, N(y_3) = \left\{ x, z_7, z_8, z_9 \right\}, \\ N(y_4) &= \left\{ x, z_9, z_{10}, z_{11} \right\}. \end{split}$$

Hence z_2 will be adjacent to one of three vertices z_4, z_5, z_6 , this vertex is called by a, z_2 is adjacent to one of three vertices z_7, z_8, z_9 , this vertex is called by b ($b \neq z_9$) because $z_2 lnN(z_9)$). Similarly, z_2 is adjacent to one of two vertices z_{10}, z_{11} and this vertex is called by c. Therefore, we obtain $\{y_1, z_1, a, b, c\} \subset N(z_2) \Rightarrow |N(z_2)| \ge 5$.

(A contradiction with $|N(z_2)| = 4$)

We have z_2 is not adjacent to z_1 , hence z_2 is adjacent to z_4 .

Because z_2 is not adjacent to y_3 , z_2 is adjacent to one of three vertices z_7, z_8, z_9 . Therefore, it is adjacent to one of two vertices z_7, z_8 . Without loss of generality, we consider the case which z_2 is adjacent to z_7 . Similarly, z_2 is adjacent to z_10 . Consequently, $N(z_2) = \{y_1, z_4, z_7, z_{10}\}$.

+ We consider vertex z_3 :

Similarly as z_2 , z_3 is adjacent to z_4 and z_3 is adjacent to one of two vertices z_7, z_8 .

Case z_3 is adjacent to z_7 :

Because z_7 is not adjacent to y_4 , z_7 is adjacent to one of two vertices z_{10}, z_{11} , this vertex is called by a.

 z_7 is adjacent to one of three vertices z_4, z_5, z_6 , called by b.

 $\Rightarrow \{y_2, z_3, a, b, z_2\} \subset N(z_7) \Rightarrow |N(z_7)| \ge 5.$

(A contradiction with $|N(z_7)| = 4$)

Consequently, z_3 must be adjacent to z_8 . Similarly, z_3 is adjacent to z_{11} .

Finally, $N(z_3) = \{y_1, z_4, z_8, z_{11}\}$.

+ We consider vertex z_5 :

Similarly as z_2 , we obtain z_5 is adjacent to z_1 and z_6 is adjacent to z_1 .

Because z_5 is not adjacent to y_3 , z_5 is adjacent to one of two vertices z_7, z_8 .

Case z_5 is adjacent to z_7 :

 z_5 is adjacent to z_{11} (Because z_5 is not adjacent to z_3, y_4)

Case z_5 is adjacent to z_8 :

 z_5 is adjacent to z_{10} (Because z_5 is not adjacent to z_2, y_4)

Without loss of generality, we consider the case which z_5 is adjacent to z_7, z_{11}

Therefore z_6 is adjacent to z_8, z_{10} .

Consequently, $N(z_5) = \{y_2, z_1, z_7, z_{11}\}$ and

 $N(z_6) = \left\{ y_2, z_1, z_8, z_{10} \right\}.$

+) We consider vertex z_7 :

We have $N(z_7) = \{y_3, z_2, z_5, a\}$.

Because
$$z_7$$
 is not adjacent to y_4
 $N(y_4) = \{x, z_9, z_{10}, z_{11}\}, \{a\} \cap \{z_{10}, z_{11}\} \neq \emptyset$.

Because
$$z_7$$
 is not adjacent to z_3
 $(N(z_2) = \{v_1, z_4, z_9, z_{11}\}), \{a\} \cap \{z_9, z_{11}\} \neq \emptyset$.

$$(z_3) = (y_1, z_4, z_8, z_{11}), (u_1^{++})(z_8, z_{11}) \neq$$

So that $a = z_{11}$.

Hence
$$N(z_7) = \{y_3, z_2, z_5, z_{11}\}.$$

Because z_7 is not adjacent to z_6 $(N(z_6) = \{y_2, z_1, z_8, z_{10}\}), N(z_6) \cap N(z_7) = \emptyset$. A contradiction with diameter of G = 2.

Concentration with diameter of O =

Consequently, $n_4 \neq 16$.

Finally, $n_4 \le 15$ and $n_4 = 15$. We have P(3) with |V| = 15, and P(3) is 4-regular graph with diameter 2.

3. Conclusion

In this paper, we define n_k which is maximum number of vertices in a k - regular graph with diameter 2, and we estimate n_k for all $k \in \square$ * and determine n_k in case k = 2,3,4.

Acknowledgments

This research was supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED), No. 102.01-2012.29.

References

[1] Diestel R, Graph Theory, Springer 2000.

[2] Hoffman, A. J. and Singleton, R. R. *On Moore Graphs of Diameter Two and Three*. IBM J. Res. Develop. 4, 497-504, 1960.

International Journal of Advanced Computer Technology (IJACT)

[3] Paul Erd o s, Siemion Fajtlowicz, Alan J. Hoffman, *Maximum Degree in Graphs of Diameter 2*, Networks, Vol. 10 (1980) 87-90, 1980 by John Wiley & Sons, Inc.

[4] Zoltáin F uredi, *The maximum number of edges in minimal graph of diameter 2, IMA Preprint Series, March* 1988

Biographies

FIRST AUTHOR received the Math degree in discrete Mathematics from the University Greifswald (Germany), in 1981, the Dr. rer degree in discrete Mathematics from the University Greifswald (Germany), in 1984 and the Dr. rer habil degree in discrete Mathematics from the Berg-Academy University in Freiberg Germany in 1996, respectively. Currently, He is an associate Professor of Computer Science at Hanoi University of Education (Vietnam). His teaching and research areas include Graph Theory, Complexity Theory, Algorithm Design... He has authored/coauthored many textbooks. Professor Vu Dinh Hoa may be reached at http://fit.hnue.edu.vn/~hoavd/.

SECOND AUTHOR graduated in Mathematics at Ha Noi University of Education in 2004. He got his Master of Science in Analytics at Ha Noi University of Education in 2007. Since 2011, he is PhD student in Computer Sciences at University of Natural Sciences, Vietnam National University in Hanoi.