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Abstract: The class of Gaussian processes is one of the most widely used families of stochastic processes for 

modeling dependent data observed over time, or space, or time and space. The popularity of such processes stems 

primarily from two essential properties. First, a Gaussian process is completely determined by its mean and 
covariance functions. This property facilitates model fitting as only the first- and second-order moments of the 

process require specification. Second, solving the prediction problem is relatively straightforward. The best 

predictor of a Gaussian process at an unobserved location is a linear function of the observed values and, in many 
cases; these functions can be computed rather quickly using recursive formulas. We consider a discrete time dual 

server queuing system queuing networks with negative customers, signals, triggers where they arrive Gaussian 

process of order p (DAR(P)/D/s, and the service time of a customer is one slot.  In contrast with the normal 

positive customers, negative customers arriving to a non-empty queue remove and work from the queue For this 
queuing system, we give an expression for the mean queue size. Further we propose approximation methods for the 

mean queue size which is based on matrix method. 
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1 Introduction 
Gelenbe introduced a new class of    queuing networks with 

two types of customers. The first type of customers is 

regular customers and they are treated in the normal way 

by a server. 

We call these customers positive or regular customers. A 

positive customer obeys the specified Service and routing 

disciplines that determine the dynamic of the network 

under consideration. On the other hand, the second type of 

negative customers have the effective of a signal which 

induces a positive customer in the node, if any, to leave 

immediately the node.Thisqueueing network with positive 
and negative customers was initially motivated by neural 

network modeling. In this context, a node represents a 

neuron. Positive and negative customers routing in the 

network represent excitation and inhibition signals which 

increase or reduce in one unit the potential of the neuron to 

which they arrive. Extensions of the original network of 

Gelenbelead to a versatile class called in the literature as G-

networks because it provides a unifying basis for queuing 

and neural networks. This analogy was discussed in detail 

in the survey paper by Gelenbe. 

The time-series models with relatively few parameters are 

well suited for ‘accurate and meaningful’ modeling of 
various traffic sources in high-speed applications. Several 

queuing systems with time-series models have been 

analyzed and number of results has been analyzed and a 

number of results have been investigated by many authors. 

Investigated by many authors. In the continuous time case, 
Finch and Pearce  

(1965) andPearce (1966) considered an MA/M/1 queuing 

system, which has a moving average processas an input 

process and an exponential service time. In the cases of 

moving average processes of orders 1 and 2 for the inter 

arrival times, explicit expressions for the tail behavior of 

the queue size distribution were provided. The approach of 

Finch and Pearce can be extended to any finite order 

moving average model, although the complexity of 

computations increases exponentially with the order of the 

moving average model. For a discrete time queuing system 
with discrete moving average process of order 1 as an input 

process, He and Sohraby 

(2003) obtained a simple closed-form expression for the 

stationary distribution of the queue size. Addie and 

Zukerman (1994) provided an approximation in a closed 

form for the stationary virtual waiting time distribution in 

the discrete time queuing system with an arrival process 

that follows an autoregressive process of order 1 and 

constant service time. In this paper, we study the discrete 

time queuing model with a discrete autoregressive process 

of order p (DAR(p)) as an input process. The DAR(p) 

process, constructed and analyzed by Jacobs and Lewis 
(1978), has developed into one of several standard tools for 

modelling input traffic in telecommunication networks. 

Elwalid et al. (1993) and Heyman 

et al. (1992) analyzed several traces of variable-bit-rate 

videoconferencing traffic and model led them using the 
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DAR(1) process. Ryu and Elwalid(1996) used the DAR(p) 

process to accurately model video traffic. In addition, 

Widjaja and Elwalid(1999) used theDAR(p) process as an 

input process to compare the performance between virtual 

circuits 

(VC) merging and non-VC merging. Besides these works, 

the DAR(p) process has also been used in other research 

areas. For example, Dehnert et al. (2005) used 

theDAR(p)process to study the correlation structures of 
DNA sequences. 

To the best of our knowledge, there are no analytic results 

on queues with DAR(p) arrivals, except for the case of p = 

1. For a discrete time single sever queue with 

DAR(1)inputs, Hwang and Sohraby(2003)and Wang et al. 

(2002)derived the probability generating functions of the 

stationary queue size and the stationary waiting time, 

respectively. Kim 

et al. (2007) obtained the stationary distributions of the 

queue size and the waiting time in transform-free form 

using an embedded Markov chain and the Bernoulli 
arrivals see time averages property. For a discrete time 

multi server queue with DAR(1) inputs, Choi et al.(2004) 

obtained the stationary distributions of the queue size and 

the waiting time using the matrix analytic method. For a 

discrete time single server queue with DAR(1) input, Kim 

and Sohraby(2006)investigated the tail behaviors of the 

queue size and the waiting time distributions. In the current 

paper, for the DAR(p)/D/2 queue, we give an expression 

for the mean queue size, which yields upper and lower 

bounds for the mean queue size. Further we propose one 

approximation methods for the mean queue size. which is 

based on the matrix analytic method . We show, by 
illustrations, that the proposed approximations are very 

accurate and computationally efficient. The remainder of 

this paper is organized as follows. 

Section  2provides an exposition ofDAR(p) process and 

contains our model. 

. In Sect. 3. The priority positive and negative  queuing 

discipline and  PGF of queue size.  

 

 In Sect.4 we propose  approximation methods for the mean 

queue size, and illustrate that the approximations are very 

accurate and computationally efficient . 
 

2 DAR(p)/D/2queueing model 
 

Let {B(t) : t = . . . ,−1, 0, 1, . . .} be a sequence of 

independent and identically distributed  random variables 

taking the non negative integer values .A discrete 

autoregressive process of order 1 (DAR(1)) {A(t) : . . . ,−1, 

0, 1, . . .} is defined by the regression equation(t) = 

(1−α(t))A(t −1) +α(t)B(t), t = . . . ,−1, 0, 1, . . . ,                                   
(1) 

where {α(t) : t = . . . ,−1, 0, 1, . . .} is a Bernoulli process 

with P(α(t) = 0) = δ (0 < δ <1) and P(α(t) = 1) = 1 − δ, that 

is independent of {B(t) : t = . . . ,−1, 0, 1, . . . . . .}. Note 

that the regression equation (1) can be written, informally, 

as 

 

A(t) =(    B(t) with probability( 1 −δ)) 

(A(t −1) with probability δ) 

 

 

Let A and B be the generic random variables for A(t) and 
B(t), respectively. The following are basic properties of a 

DAR(1) process. 

• {A(t) : t = . . . ,−1, 0, 1, . . .} is stationary. 

• The stationary distribution of {A(t) : t = 0, 1, 2, . . .} is the 

same as the distribution of B. 

• The autocorrelation function rA(k) for a DAR(1) process 

{A(t) : t = . . . ,−1, 0, 1, . . .} is given by 

 as    rA(k) ≡ Cov(A(t), A(t + k)) /Var(A(t))= = δk, k= 0, 1, . 

. . . 

The model (1)is extended to higher orders as follows (see 

Jacob and Lewis :1978,1983) 
The p-th order model, DAR(p) process {A(t) : t = . . . ,−1, 

0, 1, . . .}, is given byA(t) = (1− α(t))A(t − (t)) + α(t)B(t), ,. 

 

A(t) = (1− α(t))A(t − (t)) + α(t)B(t), t = . . . ,−1, 0, 1, .                               

(2)where {α(t) : t = . . . ,−1, 0, 1, . . .} and {B(t) : t = . . . 

,−1, 0, 1, . }are as before and{ (t) : t = . . . ,−1, 0, 1, . . .} is 

a sequence of i.i.d. random variables taking values in 

theset{1, 2, . .p} withP( (t) = i) = φi, i= 1, 2, . . . , p.The 

processes {α(t) : t = . . . ,−1, 0, 1, . . .}, {B(t) : t = . . . ,−1, 0, 

1, . . .} and { (t) : t =. ,−1, 0, 1, . . .} are assumed to be 

independent. Note that the regression equation (2)can be 

written, informally, as 

   , 
                             

      A(t)= 

                             

                          
                             

                             

                                         (3) 

         
  

It is seen that {A(t) : t = . . . ,−1, 0, 1, . . .} is stationary and 

the stationary distribution o{A(t) : t = . . . ,−1, 0, 1, . . .} is 

the same as the distribution of B. Furthermore, the 

autocorrelation functionr A(k) satisfies the following 

equations called Yule-Walker equations Jacobs and Lewis : 

rA(0) = 1, rA(k) =    
    

For some properties of DAR(p) process and related 

processes, see, for examples (Jacobs and Lewis ; McKenzie 

). 

We consider the discrete time DAR(p)/D/2 queue, where 

the time is divided into slots of equal size and one slot is 

needed to serve a customer. The DAR(p) process {A(t),t = . 

. . ,−1, 0, 1, . . .} serves as an arrival process, i.e., A(t) 
represents the number of customers that arrive at the t th 
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slot. The order of services are assumed to be based on the 

first come- 

first-served policy. Furthermore, arriving customers during 

a single slot are served in random order. We assume the 

stability condition ρ ≡ E[A(t)] <1 

We consider a discrete-time queuing system where the time 

axis is segmented into a sequence of equal time intervals 

(called slots). It is assumed that all queuing activities 

(arrivals and departures)occur at the slot boundaries, and 
therefore they may occur at the same time. For 

mathematical clarity, we will suppose that the departures 

occur at the moment immediately before the slot 

boundaries and the arrivals occur at the moment 

immediately after the slot boundaries. Customers arrive 

according to a geometric arrival process with rate p, that is, 

p is the probability that an arrival occurs in a slot. If, upon 

arrival, the server is idle, the service of the arriving 

customer commences immediately. Otherwise, the arriving 

customer either with probability q+ join the waiting line in 

order to be served (positive customer), or with 
complementary probability q- the customer in service 

(negative customer) or all the customers in the system 

simultaneously(disaster). In the following two sections we 

will analyse both cases separately: negative customers and 

disasters. 
   p1,0=s’p’+spq’,   p2,0=s’pq’ , 

It is always assumed that services can be started only at slot 

boundaries and their durations are 

integral multiples of a slot duration. Service times are 

independent and geometrically distributed with probability 

s/=1−s, where s is the probability that a customer does not 

finish his service in a slot. 

     We will suppose 0 < q+ < 1 and, in order to avoid trivial 

cases, 0 < p < 1 and 0 < s < 1. At time m+ (the instant 
immediately after time slot m), the system can be described 

by the process Xm , which denotes the number of customers 

in the sysytem (including the one in service if any). 

It can be easily shown that {Xm, m € N} is the one 

dimensional Markov chain of our queuing system, whose 

states space is { 0,1,2,3…}. 

Our first objective will be to 2nd the stationary distribution 

 k =       [Xm = K], K    0 

 

of the Marko chain {Xm, m € N}. We introduce the 

auxiliary generating function 

              
   , │ z │≤1 

in order to solve the Kolmogorov equations for the 

distribution     It should be pointed out that  (z) is the 
marginal generating function of the number of customers in 

the waiting line when the server is busy. 

 

3. The priority positive and negative  queuing discipline   
In this section we consider the  (removal of customers from the 
head of the queue) discipline. 

This is appropriate for modelling server breakdowns where a 
customer in service is lost. 
The one-step transition probabilities pk’,k= P[Xm+1=k/Xm+1=k’] are 

given by the formulae 
 
   P0,0=p’,     p0,1=p,    p1,1 s’p’ + spq’,     p2,1=s’p’ + spq’ ,     

p3,1=s’pq’ ,       pk-1,k=s’pq’ , 
  pk,k=s’pq + sp’,        pk+1,k=s’p’ + spq’ ,      pk+2,k=s’pq’  where   
k   , and  p’=1-p. 

The Komolgorov equation for the distribution  k  are 

 
 0=p’ 0 + (s’p’ + spq’) 1 + s’pq’  2,                                          (1) 

 1 = p 0 + (s’p + sp’)  1 + (s’p’ + spq)  2 + s’pq’  3  ,                    

(2) 
 k = spq+  k-1 + (s’pq+ + sp’)  k + (s’p’ + spq’)  k+1 + s’pq’  k+2 , 

K  2       (3) 

and the normalization condition is     
    = 1. 

Multiplying (3) by zkand summing over k leads to 

[(s’ + sz) 
   

 
      + s’pq+z –z] 1  + [(s’ + sz)pq’ + s’p’z] 2 

+ s’pq’z  3 = [(s’ + sz)(
   

 
+ p’ + pq+ z)– z]    .     (4) 

By substituting (1) (2) into (4) we have  

[(s’ + sz)(
   

 
+ p’ + pq+ z)– z]     = p(1-z)[ 0 + s’q’ 

   

 
 1 ] ,  

which can be written as  
[spq

+ 
z

2 
(p’ + pq’)z – pq’]     = -p(1-z)[   0 +s’q’(z + 1)  1 ,          (5) 

where _ = p= J s is the load of the system. 
Note that the polynomial in the left-hand side of Eq. (5) has two 
roots z1*  and z2*  ,the conditions  
2 , which satisfy the conditions -1 < z1*< 0 and z2*>0.   Settings  
z=z1*  ineq (5), we get 
Z1* 0  +s’q’(z1* + 1)  1 =0.                                                                   (6) 

Taking into account the expression 

            
                  

                    
=   0 +2s’q-  1)/(1-

         ) *   

 
And the normalization condition  0 +                  
(1+ 2   q’)  0  + 2pq-  1=1- (q+ -q-) ,                                                     (7) 

The system of Eqs. (6)–(7) has a unique solution, since the 
determinant 
 

 
               

          
 =-q- [s’(z1* + 1]) + +2p(q- - q+)z1*)]                 (8)   

                                                              
is not equal to zero. This solution is given by 
            - 0 =

            

                     
(z1

*
 + 1)                         

 

 

   
            

                    

    

    
 

 

From the expressions for   0and  1, we conclude that  (q+ - q-)< 1 

is a necessary condition for the ergodicity of the Markovchain. 
 Corollary1. The probability generating function of the number of 
customers in the waiting line (i.e., of the variable N) is given by 
 

       0 +     = 
            

                    
[ z1

*  
+1+

 

          
] 

 

After a simple derivation exercise, we obtain 
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     = 
            

                    
 

  

             
   , k   

 
Corollary2. (1) The steady-state distribution of the waiting line 
size is given by the following Formulae 
 

         0 +     
            

                    
 (1 +

      

      
) 

 

         k+1  
            

                    
 

 

           
 , k   

2) The steady-state distribution of the system size is given by the 
following formulae 
 

         0   
            

                    
(z1* + 1) 

 

         k  
            

                    

 

         
 , k   

 

4. Analysis of the DAR(P)/D/S 
 

We consider the discrete time DAR(P)/D/Squeue where the time 
is divided into slots of equal size  
one slot is needed to serve a packet by a server. Weassume that 
packet arrivals occur at the beginning of slots and departures 
occur at the end of slots. ADAR(P)/D/S,  X (t): t =0; 1; 2; 
..represents packet arrivalsso that X (t) is the number of packets 
arrivingat the beginning of the tth slot.We analyze the DAR(P)/D/s 
queue. Let N(t) bethe number of packets in the system (we call it 

systamize) immediately before arrivals at the beginning of the tth 
slot. Then (N(t); X (t)): t =0; 1; 2; is a Markov process. Note that 
the Markov proces(N(t); X (t)): t =0; 1; 2; .. has M/G/1 . But, it is 
not easy to calculate the stationarydistribution of (N(t); X (t)): t 
=0; 1; 2; ..itself, because the number of phases is infinity. So, we 
find the stationary distribution of theMarkov process(N(t); X (t)): 
t =0; 1; 2; ..by introducing a new Markov process at the embedded 
epochs   k : k =0; 1; 2; ..defined below. 
Let 0=               be the epochs defined by 

 

 k= 

                   

 
                   

                            
  Let  Nk=N(  )   , k=0; 

1; 2; ….. 

 k= 
                          

                
            

 

Note that packet arrivals at and after    are independent of the 

information prior to    given Jk. For this, it is observed that Nk; Jk): k =0; 

1; 2; …. is a Markov process with state space E =0; 1; 2;  and that the 

Markov process Nk; Jk ): k =0; 1; 2; …has the following transition 

probabilities. 

 

1)For n=0; 1; 2; …and i=0; …s−1, 
 
      

 

                 
                  
                
                    

   Ai=

 
 
 
 
 
 
     
 
 
 
 
 

      
  
    

  
  

           
 
 
 
 
 

 

 
 
2)For n=0; 1; 2; : : : 

;      

 
 
 

 
 
                                    

         
     

                       

  

 
where 

     
         
          

                                                       

Ai= 

      
        
       
         

  

go=bs, 

 

gl=

      
 

      
    

 

 
   ,l=1,2….                                                  

Bi=    

 

,    l     

                                                                                                We assume 

that the stability condition                              Therefore, theMarkovprocess 

(Nk; Jk): k =0; 1; 2….. 

has the M/G/1 type structure (see [8]) of the one step           E[X(t)]= =  

              
      

transition probability matrix P:                                                                                                                                                                     
                                                                                       is satisKed. Then, 

by matrix analytic methods in [8]                                                                                   

     

                                                                                        the limiting 

probabilities     

                                                                                       of (Nk; Jk ): k =0; 1; 

2; : : : 

 
                                                                                                         
     = } , ≥0 ,0≤ ≤ , 
 

   Are calculated as ,  

  

1.set 

       P= 
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A'n=  

 
 
 
 
 
 
 
 
 

                     

                     
          
          

                          

 

 

 
 
 
 
 
 
 
 
 

 

 
N= 0,1,2,3,……….. 

 

where Al =O for l¡0. Set 

 

 

B0'=  

 
 
 
 
 
 
 
 
 

               
               
          
          

           

 

 

 
 
 
 
 
 
 
 
 

, 

B’n =A’n +1 , n=1,2,3,….. 
   

                                                                                                      

2. Find the minimal nonnegative solution G of the            

matrix equation 

 

G =                  
    

 

For example, G is given by the iteration 

 

G0= 0,   Gl+1 =        
    , l=0,1,2……….. 

Pnj=
    

            
                                      
    

 
   

                                     
   

 
   

 

Set  

       K=          
    

3. Find a positive row vector k satisfying 

kK= k 

4. set 

X0=k , 

 

Xn= (x0             
                     

   
   
   ). X(I 

-     
            

  )-1  ,  n=1,2,3…. 

Now we find the stationary distribution of the Markov process (N(t); X 

(t)): t = 0; 1; 2; : : :.Observe that ((Nk;Jk);   ): k = 0; 1; 2; : : : is aMarkov 

renewal sequence  and that (N(t +   ); X (t +   )): t = 0; 1; 2; : : :given 

(N(u); X (u));      ; (Nk; Jk) = (n; i)}is stochastically equivalent to (N(t); X 

(t): t = 

0; 1; 2; : : : given(N0; J0) = (n; i). Hence(N(t);X (t)): t = 0; 1; 2; : : : is a 

discrete time Markov regenerative process with the Markov renewal 

sequence ((Nk; Jk);   ): k = 0; 1; 2; : : :.By Theorem 4 in Appendix A, the 

limiting probabilities (hence the stationary probabilities) pnj= 

limt→ P(N(t); X (t)) = (n; j); n;j=0; 1; 2; : : :, of (N(t); X (t)): t = 0; 1; 2; : :  

are given  by 

 

 

Observe that 

E[                                           
     

 
  
 

  
 

                           
                             

  

      
                       

    
   

   
                                      

           

  

Therefore the numerator of the right hand side of (3) 

is

 
 
 

 
                         

     

   
     

                          

 

     

    

  

 

Observe that 
 
E[ k+1 – k|(Nk,Jk)=(l,i)]  

= 
                  

         
 

   
              

    
   
    

  

 

Therefore the denominator of the right hand side of (3) is 

 

   
                 

                 
 

   

 
   

 
     

               (4) 

 
P(W=w) = 

                                                                         

                                 
(6) 

 
{Jk:k =0; 1; 2; : : :} whose transition probability matrik is 

 

P((Jk+1=j|Jk))0        

 
 
 
 
 
 
 
 
 
      

      
   

      
   

           

   

   

  
   

         

   

     
 
 
 
 
 
 
 
 
 

 

 
By solving the balance equations for the stationarydistribution of the 

Markov process Jk:k =0; 1; 2; ….. 
we obtain 

 

      
   = 

   

          
    

             

   

          
    

    
          

 

 (5) 

By substituting (5) into (4), we obtain the denominator 

of the right hand side of (3) as 
   

          
    

 , 

Thus, we have the following theorem. 

 

Theorem1. The limiting probabilities (hence the 

stationary probabilities) 
Pnj=       { N(t),X(t)=(n,j)}, n,j=0,1,2,….., of { 

(N(t),X(t)) :   t=0,1,2,….} are given by 
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pnj     =       

 
 
 

 
                            

   
     

   
     

                               

 

     

    

  

 

 where                  
       

 

Now we find the stationary distribution of the waiting time of a packet. 

Let W denote the waiting 

time of an arbitrary packet at steady state. Then for w=0 ,1,2…, 

 

Suppose that there are n packets immediately before arrivals at the 

beginning of the tth slot and that the number of packet arrivals is j at the 

beginning of the tth slot, i.e., N(t)=n and X (t)=j. Then the number of 

packets whose waiting time is w among the ones who arrive at the 

beginning of the tth slot is  

 

 
                                 

                      
            

  

Therefore the mean number of arrivals in a slot at steady state 
whose waiting time is w is 

 

 
    
                      

        

       =  +1  +1−1 =1  =0     min{  +1− , }  

 
Since the mean number of arrivals in a slot is at the following 
theorem is obtained from (6). 
 

Theorem2. The distribution of the waiting time Wof an 

arbitrary packet is given by 

 

P(W=w) = 

 

          
 

 
    
                      

        

       =  +1  +1−1 =1  =0     min{  +1 , } , 

 

W= 0,1,2…….. 

5. Conclusions:  
In this paper we consider a discrete time dual server 

queuing system, queuing networks with negative 

customers, signals, triggers where they arrive Gaussian 

process of order p (DAR(P)/D/s, and the service time of a 

customer is one slot.  In contrast with the normal positive 

customers, negative customers arriving to a non-empty 

queue remove and work from the queue For this queuing 

system, we give an expression for the mean queue size. 

Further we suggest that approximation methods for the 

mean queue size which is based on matrix method is more 

suitable than the generating method. . 
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