
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

49

TWO APPROACHES WITH UNCERTAINTY FACTOR ANALYSIS

TWO APPROACHES WITH UNCERTAINTY

FACTOR ANALYSIS
Arashdeep Kaur

 Assistant Professor

Chandigarh

Abstract : Software Reliability is considered to be

an important factor affecting system reliability.

Reliability estimates are used for various purposes:

during development, to make the release decision; and

after the software has been taken into use, as part of

system reliability estimation, as a basis of

maintenance recommendations, and further

improvement, or a basis of the recommendation to

discontinue the use of the software. Black box and

white box are the two approaches for the reliability
estimation. Factors like test coverage, number of

failures etc influence the reliability of software in one

or the other way. In this paper, a review to proposed

black box and white box reliability models is made

taking into account the uncertainty factors of black

box models affecting the reliability

1. Introduction

 The size and complexity of software systems have

increased during the past few decades. The data from

industry show that the size of the software for various

systems and applications has been growing

exponentially for the past 40 years [1]. Because of this

ever-increasing dependency, software failures can

lead to serious, even fatal, consequences in safety-

critical systems as well as in normal business.

 Software reliability is a critical technological
challenge for the 21st century; as software plays a

greater role in our society, the reliability of that

software becomes a key concern. Reliability, in the

general engineering sense, is “the probability that a

given component or system within a specified

environment will operate correctly for a specified

period of time.”A software failure occurs when the

observed behavior of a software system departs from

its specified behavior. Software failures are ultimately

the result of faults in a program, which are the human

mistakes made during the construction of the system.
Availability is measured as the probability of a

software service or system being available when

needed. Reliability and availability are often defined

as attributes of dependability, which is “the ability to

deliver service that can justifiably be trusted” [2]. For

measuring and predicting system reliability, we use

the following basic notions (John D. Musa and

Okumoto, 1987; Laprie and Kanoun, 1996): mean

time to failure (MTTF) defines the average time to the

next failure; mean time to repair (MTTR) is the

Average time it takes to diagnose and correct a fault,
including any reassembly and restart times;

Mean time between failures (MTTF) is simply defined

as MTBF = MTTF + MTTR; the failure rate is the

number of failures per unit time. Software architecture

is the first asset that describes the system as a whole.

Architecture defines the system structure comprising

the components, their externally visible properties and

their relationships among each other [3]. By analyzing

the reliability and availability prior to system

implementation, time and resources are significantly

saved.

 Reliability and availability prediction from the
architectural descriptions is a challenging task for two

main reasons:

 Reliability is strongly dependent on how the

system will be used. Since reliability and

availability are execution qualities, the impact of

faults on reliability differs depending on how the

system is used, i.e. how often the faulty part of the

system is executed. The analysis of different ways

and frequencies to execute the system is a

challenge to R&A prediction, especially when the
usage profiles of the system are unknown

beforehand.

 The reliability of software architecture depends on

the reliability of individual components,

component interactions, and the execution

environment. The reliability of a component

depends on its internal capabilities, e.g.

implementation technology, size, and complexity,

information about which might be unavailable, or

not yet exist, while architecting. Furthermore,

components rely on other components, interactions
between components, and on an execution

environment, the reliability of which may be

unknown. Most of these problems appear mainly

due to uncertainty involved in reliability

parameters and the factors that contribute to

software reliability estimation should be identified.

Currently there exist two very broad categories for

estimation of the reliability of software systems which

are called white-box and black-box models. The

group of white-box models consists of several kinds

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

50

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 1

of models that are used to estimate the reliability of

software systems, based on the knowledge of their

internal structure and processes going on inside them.

This knowledge may be expressed by different means,

such as architecture models, test case models, etc. On

the other hand, the group of black-box models

encompasses much larger number of methods that

treat the software as a monolithic whole, i.e. as a

black-box. We define uncertainty as the deviation of
the reliability estimate given by the model, from the

‘true’ reliability of the system. Factors influencing

uncertainty include characteristics of software [4],

such as program complexity, test coverage,

development environment and many others, appearing

during the development lifecycle.

2. Measurement Techniques: Necessary

Data

 Just as a reminder, the title’s question is

worth repeating: What data is necessary? Data should

not be collected only because it can be done. This
would be just wasteful. First of all, a goal should be

defined properly that lead to questions that can be

answered by collecting data.

Program Size
 Several models use the size or complexity of a

program as input. A well-known metric for measuring

program size is the lines of code metric (LOC) which

is deceivingly simple. One problem with LOC is the

ambiguity of the operational definition. Which lines
are to be counted? Surely executable lines are

counted, but what about two executable statements in

one line? Lines containing data declarations only?

Empty lines? Comments? Obviously, this problem can

and has to be handled by a clear definition of LOC.

Test Phase
 Data collected during the test phase is often used to

estimate the number of software faults remaining in a

system which in turn often is used as input for
reliability prediction. This estimation can either be

done by looking at the numbers (and the rate) of faults

found during testing or just by looking at the effort

that was spent on testing.

Failure Data
 Of course, information about observed failures can

also be used for software reliability assessment. Data

collected includes, e.g., date of occurrence, nature of

failures, consequences, fault types, and fault location.
In the case when field data is not available and testing

does not yield a sufficient amount of failure data, fault

injection can be applied.

3. Black Box Reliability Models

 Software reliability estimation with black box
Models dates back to the year 1967 when Hudson

modeled program errors as a stochastic birth and

death process. In the following years, a lot of models

have been developed building on various stochastic

Properties. Tests are generated from the specified

functional properties of the program [Howden [6]],

based on its operational profile [Musa [7]].

 The internal structure of the program is not taken

into account while generating the test cases. A

stochastic model is calibrated using the failure data

collected during the functional testing of the software,
and this model is then used to predict the reliability of

the software, and to determine when to stop testing.
Additionally, in some situations, if the software being

developed is the first of its kind, the operational

profile may simply be unavailable. Pasquini et al.

[1996] conduct a study to investigate the sensitivity of

the reliability growth models to the predictions in the

operational profile. As testing proceeds, it is easier for

a test case to increase coverage in the earlier part of

testing than in the later phases. Thus it becomes

increasingly more difficult to design test cases which
will execute unexercised parts of the code, and detect

faults in a program. As a result, the time between

failures increases as testing time increases. However,

the reliability of the software will increase only if the

number of residual faults in the program is reduced.

 The black box approaches measure the reliability

of a piece of software only based on observations

from the outside. Intuitively, some software quality

attributes, such as performance or reliability is

compositional - the quality of a larger

System seems to be derived from the quality of

smaller parts and their relationship to each other.
Architecture-based approaches follow this intuition by

looking at the coarse grained inner structure of

software to measure the reliability.

4. Architecture-Based Reliability Models

(White Box)

 Large software systems are often composed

from smaller blocks that bundle functionality. In

architecture-based reliability prediction, these blocks

are named components. Without the need to refer to a

special definition components are just considered as

basic entities of the software architecture. The
architectural reliability models allow predicting the

system reliability from the software architecture

(containing components and connections between

them) and the component reliability data. A major

advantage of architectural reliability (or performance)

prediction approaches is that it is possible to predict

the system reliability already early during the software

design phase [14]. Failure data of the composed

system is not required, as it is the case for the black

box approaches. Thus predicting the reliability of
an application earlier in the life cycle, taking into

account the information about its architecture,

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

51

TWO APPROACHES WITH UNCERTAINTY FACTOR ANALYSIS

and the testing and reliabilities of its

components, is essential.

Goseva-Popstojanova et. al. [11] classifies the
existing architecture–based models into three broad

categories: state–based, path–based and additive.

State– based models use the control graph to represent

software architecture and predict reliability

analytically. Path–based models calculate software

reliability considering the possible execution paths of

the program. The execution paths may be determined

using simulation, execution [12], or algorithmically

[13, 14]. Additive models assume that component

reliability can be modeled by a non-homogeneous

Poisson process (NHPP) which leads the system
failure process to be NHPP with cumulative number

of failures and failure intensity functions that are the

sums of the corresponding functions for each

component [15]. Additive models do not consider the

architecture of the application explicitly.

 Various Poisson and binomial type models

 In this section we have provided with various

Poisson and binomial type models. Models based on

the binomial distribution are finite failure models, that

is, they postulate that a finite number of failures will

be experienced in infinite time. Models based on the
Poisson distribution can be either finite failure or

infinite failure models, depending on how they are

specified. Different models were developed with

different assumptions. Still there are many factors that

influence these models. Factors can be any

uncertainty parameters. Any of the classical models

can be made Bayesian by specifying appropriate

distributions for one or more of their parameters.

Interestingly, most of the Bayesian models use the

exponential model as a starting point (e.g., Littlewood

and Verrall, 1974 [16] ; Goel, 1977 [17]; Littlewood,
1980; Jewell, 1985; Littlewood and Sofer, 1987

[18];Thompson and Chelson, 1980; Kyparisi and

Singpurwalla 1984). It seems, however, that the

Bayesian approach suffers from its complexity and

from the difficulty in choosing appropriate

distributions for the parameters. Every model has

some positive and negative impediments. Depending

upon the requirements and the usefulness of the

model, an appropriate model is chosen. Added to this

is the fact that most software engineers do not have

the required statistical background to completely

understand and appreciate Bayesian models. The latter
is perhaps the main reason why these models have not

enjoyed the same attention as the classical models. All

the facts must be defined properly.

S.no Poisson Type

Binomial Type

1 Musa (1975) Jelinski and
Moranda (1972)

2 Moranda

(1975, 1979)

Schick and

Wolverton (1973)

3 Schneidewind

(1975)

Wagoner (1973)

4 Goel and

Okumoto

(1979)

Goel (1988a)

5 Yamada and

co-workers

(1983)

Littlewood (1981)

6 Yamada and
Osaki (1984)

Table1: Classification of various models based on two

types.

5. Uncertainty factors in black box

reliability models

 In the group of black-box reliability models,

we focus on the so called Software Reliability Growth

Models (SRGMs) as they are most mature and have a

wide variety of application areas. They use the
observed failure information and predict future

failures that reflect the growth of reliability. Software

reliability is one of the important factor that is

considered for each and every software. Tools such

as CASRE [9], SMERFS [8] are available for

analyzing SRGMs. These models depend only on the

number of failures observed or time between failures.

SRGMs are in use since early 1970s. Three models

that represent different groups of SRGM and found

more suitable for safety critical applications are

discussed here. Jelinski-Moranda [20] is one of the

basic models which assumes exponential failure rate.
Musa-Okumoto [22] model assumes that the software

is never fault free and is recommended for safety

critical applications. This assumption must be taken as

nothing can be totally error free. Littlewood Verrall

[21] is applicable when there are no failures during

testing or when failure data are not available.

Moreover this model accounts for fault introduction

during error correction process. These three models

are considered in this paper as they represent each

family of the black box model group and are suitable

for safety critical applications. Since the black-box
models rely on failure data, the reliability estimate

obtained depend on various factors that can bring in

uncertainty. These factors can be grouped into one of

the following:

Test coverage

Number of failures

Time between failures

Uncertainty

factor
Measure Models

influenced

http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref55
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref24
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref51
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref36
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref53
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref103
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref48
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref71
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref35
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref68
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref69
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref84
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref87
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref106
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref25
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref23
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref111
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref52
http://www.mrw.interscience.wiley.com/ese/articles/sof329/bibliography.html#ref110

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

52

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 1

Test

coverage

Percents Jelinski-

Moranda

Musa
Okumoto

Littlewood-

Verrall

Number of
failures

Number Jelinski-
Moranda

Musa

Okumoto
Littlewood-

Verrall

Time

between
failures

Time

duration

Jelinski-

Moranda
Musa

Okumoto

Littlewood-
Verrall

Table2: Classification of models based on uncertainty

factors.

 First, it is not possible to be sure that the test

domain completely covers the actual requirement

specifications to verify the functionality of each of the

sub-systems and their interfaces. For instance, if not

enough test-cases are executed, some (even rarely

used) branches of the application logic may remain
insufficiently tested. When a finite number of errors in

the software are identified and removed, the number

of remaining failures encountered in subsequent time

intervals is less. This dependency on the discovery of

number of failures during different time intervals

brings in significant uncertainty.

6. Conclusion

 The framework presented in this paper

addresses reliability of safety critical software systems

from a different perspective than the classical

reliability models. It identifies different factors that

bring uncertainty in reliability estimation. For this

purpose different black-box models that exist today

are discussed here. These factors need to be analyzed

properly when developing a software system. Here we

have concluded that any change in these factors
influence the models in one or the other way. Thus

future work must be considered for the various white

box reliability models taking into account different

white box models.

References

[1]W.S. Humphrey, “The Future of Software
Engineering: I,” Watts New Column, News at SEI,

vol. 4, no. 1, March, 2001

[2]Avizienis, A.,Laprie, J.C.,Randell,B.: Fundamental

Concepts of Dependability. LAAS-CNRS. p. 21

(2001)

[3] Bass, L., Clements, P., Kazman, R.: Software

Architecture in Practice. Addison-Wesley,

Reading, 452 p (1998)

[4] Zhang, X and Pham, H., An analysis of factors

affecting software reliability, In Journal of

Systems and Software, 50(1), 2000, pp. 43
[6]Howden, W.E. (1980), “Functional Program

Testing,” IEEE Transactions on Software

Engineering 6, 2, 162–169. Howden, W.E. (1985),

“The Theory and Practice of Functional Testing,”

IEEE Software 2, 5, 6–17

[7] Farr, W., Software reliability modeling survey, in:

M.R. Lyu (Ed.), Handbook of Software Reliability

Engineering, McGraw-Hill, New York, 1996, pp.

71–117.

[8] Fair, W., and Smith, O., Statistical Modeling and

Estimation of Reliability Functions for Software
(SMERFS) User's Guide, TR 84- 373, Revision 1,

NSWC, December 1988.

[9] Gokhale, S., Architecture-Based Software

Reliability Analysis: Overview and Limitations, In

IEEE Transactions on Dependable Security

Computing 4(1): 32-40 (2007).

[10] Nikora, A., Computer Aided Software Reliability

Estimation User’s Guide (CASRE), Version 3.0,

2002

[11] K. Goseva-Popstojanova and K. S. Trivedi.

“Architecture–based approach to reliability

assessment of software systems”. Performance
Evaluation, 45(2-3), June 2001

[12] S. Krishnamurthy and A. P. Mathur. “On the

estimation of reliability of a software system using

reliabilities of its components”. In Proc. of Eighth

Intl. Symosium on Software Reliability

Engineering, pages 146–155, Albuquerque, New

Mexico, November 1997.

[13] D. Hamlet, D. Woit, and D. Mason. “Theory of

software reliability based on components”. In

Proc. Of Intl. Conference on Software

Engineering, pages 361–370, Toronto, Canada,
2001.

[14] S. Yacoub, B. Cukic, and H. Ammar. “Scenario-

based analysis of component-based software”. In

Proc. of Tenth Intl. Symposium on Software

Reliability Engineering, Boca Raton, FL,

November 1999.

[15]M. Xie and C.Wohlin. “An additive reliability

model for the analysis of modular software failure

data”. In Proc. Sixth Intl. Symposium on Software

Reliability Engineering, pages 188–193, Tolouse,

France, October 1995

[16]B. Littlewood and J. L. Verrall, A Bayesian
Reliability Model with a Stochastically Monotone

Failure Rate, IEEE Transactions on Reliability R–

22(2) (1974).

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

53

TWO APPROACHES WITH UNCERTAINTY FACTOR ANALYSIS

17]A.L. Goel, Summary of Technical Progress on

Bayesian Software Prediction Models, RADC-TR-

77–112, Rome Air Development Center, Rome,

NY, 1977 W. S. Jewell, Bayesian Extensions to a

Basic Model of Software Reliability, IEEE

Transactions on Software Engineering SE-11(12)

(1985).

[18]B. Littlewood and A. Sofer, A Bayesian

Modification to the Jelinski-Moranda Software
Reliability Growth Model, Journal of Software

Engineering 2, 30–41 (1987).

[20] Jelinski, Z. and Moranda, P. (1972). Software

reliability research. In Statistical Computer

Performance Evaluation, W. Freiberger, editor,

465–484. New York: Academic Press. IEEE

Trans. Reliability, R-34, 216–218

[21] Littlewood, B : The Littlewood-Verrall model for

software reliability compared with some rivals.

Journal of Systems and Software 1: 251- 258 ,

1980
 [22] Musa, J. D. and Okumoto, K. 1984. A

logarithmic poisson execution time model for

software reliability measurement. In Proceedings

of the 7th international Conference on Software

Engineering, 1984. International Conference on

Software Engineering. IEEE, 230-238.

[23] M. Famelis, R. Salay, and M. Chechik. Partial

models: Towards modeling and reasoning with

uncertainty. In 34th International Conference on

Software Engineering (ICSE 2012), pages 573–

583. IEEE, 2012.

[24] N. Esfahani and S. Malek. Guided exploration of
the architectural solution space in the face of

uncertainty. Technical report, 2011.

[25] K. Popper. The logic of scientific discovery.

Routledge, 1959 exploration of architectural

solution space under uncertainty. In Proceedings

of the 2013 International Conference on Software

Engineering, pages 43–52. IEEE Press, 2013

