
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

1

AN EFFICIENT ALGORITHM TO COMPUTE ALL PAIR SHORTEST PATH USING DNA SEQUENCE

An Efficient algorithm to compute all pairs shortest path using

DNA sequence

P. Swarnambigai1
, Research Scholar, Dr Ambedkar Govt. Arts College, Vyasarpadi, Chennai-39;

Dr A. Murugan2, Associate Professor, Dr Ambedkar Govt. Arts College, Vyasarpadi, Chennai-39

Abstract

In this paper, we present an algorithm to compute all
pairs optimized shortest paths using DNA sequencing [19]. Re-
searchers have given many approaches for finding all pair shortest
path problem but the proposed algorithm is used to reduce time
complexity to compute shortest path. In the existing algorithm
takes O(n3) time to find the path and in the proposed algorithm, it
will take n!(n-r)! /r! where, n denotes the number of nodes and r
denotes the intermediate node during the calculation of shortest
path between nodes. Floyd Warshall's Algorithm is used to com-

pare to the proposed algorithm. This concept is implemented in the
DNA sequencing concept of Bioinformatics [18].

Keywords: Floyd Warshall's Algorithm, DNA Sequencing,

Bioinformatics

1. Introduction

The shortest path problem [4] is the problem of finding
path between two vertices (or nodes) in a graph, such that the sum
of the weights of its constituent edges is minimized. An example of
it can be, finding the quickest way to get from one location to an-

other on a road map. In this case, the vertices represent locations
and the edges represent segments of road and are weighted by the
time needed to travel to that location. The single source shortest
path is one of the oldest classical problems in algorithm theory.
Given a positively weighted directed graph ‘G‘, with a source ver-
tex s, this problem ask for finding the shortest path from 'S' to all
other vertices. So it can be considered the mother of all routing
problems. Given a weighted directed graph G = (V, E) with two

special vertices, source’s’ and a target ’t’, and the problem is to
find the shortest directed path from’s’ to’t’. In other words, we
have to find the path 'P' starting at’s’ and ending at ’t’ minimizing
the function:

w (p) = ∑ w(e)
 e€p
Specifically, for every pair of vertices ‘u‘ and ‘v‘, we need to com-
pute the following information:

 dist(u, v) is the length of the shortest path (if any) from u

to v;

 pred(u, v) is the second-to-last vertex (if any) on the

shortest path (if any) from u to v.

Given a weighted digraph with a weight function w : E R, R is
the set of real numbers that determine the length of the shortest
path between all pair of vertices in G. Given an input, n*n matrix,
‘W‘ represent the edge weights of n vertices; i.e., W= (wij), where

2. Literature Survey
The algorithm compares all possible paths through the graph

between each pair of vertices. Consider a graph G with vertices ‘v’

numbered 1 through n. Further consider a function
shortestPath(i, j, k) that returns the shortest possible path
from i to j using vertices only from the set {1,2,...,k} as intermedi-
ate points along the way. Now, given this function, our goal is to
find the shortest path from each i to each j using only vertices 1
to k + 1, which is explained in Fig 1. If the weight of the edge
between vertices i and j, we can define shortestPath(i, j, k +1) in
terms of the following recursive formula:

 ShortestPath(i,j,0) = w(i,j)

 Figure 1: Shortest path between given vertices

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

2

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 1

Figure 2 Steps to find shortest path

3. Existing Algorithm

The Floyd–Warshall algorithm [17] (also known as Floyd's al-

gorithm) is a graph analysis algorithm for finding shortest paths in
a weighted graph with positive or negative edge weights (but with
no negative cycles) and also for finding transitive closure of a rela-
tion R. A single execution of the algorithm will find the lengths
(sum of weights) of the shortest path between all pairs of vertices,
though it does not return details of the paths themselves.

We initialize the solution matrix same as the input graph matrix.
Then we update the solution matrix by considering all vertices as
an intermediate vertex. The idea is to pick the vertices one by one

and update all shortest paths which include the picked vertex as an
intermediate vertex in the shortest path. When we pick vertex num-
ber k as an intermediate vertex, we already have considered verti-
ces {0, 1, 2, .. k-1} as intermediate vertices. For every pair (i, j) of
source and destination vertices respectively, there are two possible
cases.

1) k is not an intermediate vertex in shortest path from i to j. We

keep the value of dist[i][j] as it is.

2) k is an intermediate vertex in shortest path from i to j. We update

the value of dist[i][j] as dist[i][k] + dist[k][j].

The fig. 2 and 3 shows the above optimal substructure property in

the all-pairs shortest path problem. The procedure is given bellow.

Figure 2: Intermediate Vertices

• Used to enable finding a shortest path
• Initially the array contains 0

• Each time that a shorter path from i to j is found the k that

provided the minimum is saved (highest index node on

the path from i to j)

• To print the intermediate nodes on the shortest path a re-

cursive procedure that print the shortest paths from i and

k, and from k to j can be used

4. Proposed Algorithm using DNA

sequence

DNA sequence [19] is the process of determining the
precise order of nucleotides within a DNA molecule. The Four
DNA bases are adenine (A), guanine (G), cytosine (C),
and thymine (T). In the proposed algorithm; we have used the DNA
bases Adenine and Thymine. The Weight of the node in the graph
has to be initialized as nucleotide after that it has to be converted as

binary representation in assumption as A represented as ‘0’ and T
represented as ‘1’. The following algorithm explains how to reduce
the time, when find the path and performance will be comparatively
fast with the existing algorithm exist to find the shortest path.

Figure 3: Graphical Representation of DNA Sequence

The result is analyzed by the implementation of the all
pair shortest path algorithm using DNA Sequence is done by com-

paring the Floyd-Warshall algorithm for shortest path. In the pro-
posed algorithm, if the source, intermediate and destination node is
same, then it will not find the path between the nodes so this will
save the time. The Result is analyzed by the algorithm described
and verified for many graphs with different size of the graph. In the
following code, read the input from the external file which contains
the weight of the graph in the format of genome DNA sequence.
First initialize the two 2 dimensional array such that D[][]=”0”,
P[][]=0. Here D[][] =”0” is string array which is used to store the

input value. P[][]=0 is an integer array which is used to store the
intermediate node. This code get the input as the file Input stream
format and pass the value into two dimensional array D[][] for ma-
trix representation of the graph.

int getDecimalFromBinary(int binary)
//This procedure is used to convert the binary
//number into decimal number

{
 Int decimal=0;
 Int power =0;
 While (true)

http://en.wikipedia.org/wiki/Adenine
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/Thymine

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

3

AN EFFICIENT ALGORITHM TO COMPUTE ALL PAIR SHORTEST PATH USING DNA SEQUENCE

 {
 If(binary==0)
 {

 Break;
 }
 else
 {
 Int tmp =binary %10;
 Decimal += tmp
*math.pow(2,power);
 Binary =binary/10;

 }
 }
Return decimal;
}
Int BTD (string g1)
// This procedure is used to convert the genome DNA sequence into
//binary number and then using the procedure
getDecimalFromBinary(int binary)

//it is used to convert the binary number into decimal number
{
 Char[] c=character(g1) ;//convert string value of g1 into
character array
 Int [] b= new int[4]; //declare the integer array of size
 String temp=””;
 For (int z=c.length -1;z>=0;z--)
 {

 If(c[z] == ‘T’)
 b[z]=1;
 else
 b[z]=0;
 }
 For (int z=0;z<b.length; z++)
 {
 Temp=temp + b[z];
 }

Return getDecimalFromBinary(integer(temp)); //convert the string
value of temp into integer
}
Void TimeEfficientAllPath (int n, string D[][])
//This procedure is used to calculate the all pair shortest path algo-
rithm with time efficient
// this algorithm read the n number of vertices, and weight of the
path as genome DNA sequence as // a input.

{
 Read n; //number of vertex
 For(int i=1 ;i<=n;i++)
 For(int j=1 ;j<=n;i++)
 {
 D[i][j]=”0”; // initialize the weighted matrix
 P[i][j]=0 ; // P matrix is used to store the in-
termediate node value

 }
For(int i=1 ;i<=n;i++)
{

 For(int j=1 ;j<=n;i++)
 {
 If(i != j) //check source and distination not
same
 {

 Read D[i][j]; //read the weight of
graph in the form of //genome DNA sequence
 }

 }
 }
//Convert Genome DNA sequence into decimal number

For(int i=1 ;i<=n;i++)
 For(int j=1 ;j<=n;i++)

 If(i != j)
 {
 I[i][j] =BTD (D[i][j]) ;

 }

// Calculation

For(int k=1 ;k<=n; k++)
 For(int i=1 ;i<=n;i++)
 For(int j=1 ;j<=n;j++)
 {

//This condition used to check source

,destination and //intermediate node should not
be same

 If((i != j) && (j !=k) && (j !=k))
 {
 If(I [i][j] >(I[i][k] + I [k][j]))
 {
 I [i][j] =(I[i][k] + I [k][j]);
 P[i][k] = k; // P matrix used to store the inter-

mediate node
 }

 }
 }
 }

 }
}

5. Conclusion
The algorithm run on i3 machine with 2 GB RAM and it is imple-
mented in Java JDK 2.0 and it works perfectly. The above algo-
rithm is verified with more the 15 graphs and it generated the cor-

rect paths between all the pair of vertices. The above algorithm can
also be executed parallel manner if DNA computer exist or if DNA
computing concept is implemented using Java threads [20].

References
[1] P K Singh, Rajendra Kumar Member, IACSIT and Vijay

Shankar Pandey,"An Efficient Algorithm for All Pair Short-
est Paths", International Journal of Computer and Electrical

Engineering, Vol. 2, No. 6, December, 2010

[2] Stefan Hougardy , "The Floyd-Warshall Algorithm on

Graphs with Negative Cycles ",Information Processing Let-

ters 110 (2010), 279-281

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

4

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER TECHNOLOGY | VOLUME 4, NUMBER 1

[3] Udaya Kumar Reddy K. R, and K. Viswanathan Iyer,

"All-pairs shortest-paths problem for unweighted graphs in

O(n log n) time", International Journal of Computational and

Mathematical Sciences 3:5 2009

[4] Yijie Han, "An O(n log log n/ log n) time algorithm for

all pairs shortest paths", Manuscript, 2009.

[5] Wikipedia. Floyd-Warshall algorithm — Wikipedia, The
Free Encyclope-dia, 2009. [Online; accessed 20-November-

2009].

[6] Gary J. Katz1,2 and Joseph T. Kider Jr1 , "All-Pairs

Shortest-Paths for Large Graphs on the GPU",Graphics

Hardware (2008) David Luebke and John D. Owens (Edi-

tors)

[7] Timothy M. Chan, "All-pairs shortest paths with real

weights in O(n / log n) Time", Algorithmica, 50:236–243,

2008.

[8] Yijie Han," An O(n (log log n/ log n)) time algorithm for

all pairs shortest paths", Algorithmica, 51:428–434, 2008.

[9] Yijie Han, "A note of an O(n / log n) time algorithm for

all pairs shortest paths", Information Processing Letters,

105:114–116, 2008.

[10] Timothy M. Chan, "More algorithms for all-pairs

shortest paths in weighted Graphs", In STOC07, pages 590–

598, 2007.

[11] Uri Zwick, "A slightly improved sub-cubic algorithm

for the all pairs shortest paths problem with real edge

lengths", Algorithmica, 46:181–192, 2006.

[12] Tadao Takaoka, "An O(n log log n/ log n) time algo-

rithm for the all-pairs shortest path problem", Information

Processing Letters, 96:155–161, 2005.

[13] Seth Pettie, "A new approach to all-pairs shortest paths

on real-weighted Graphs", Theoretical Computer Science,

312:47–74, 2004.

[14] Tadao Takaoka, "A new upper bound on the complexity

of the all pairs shortest path problem", Information Pro-

cessing Letters, 43:195–199, 1992.

[15] Thomas H Cormen, Charles E Leiserson, Ronald L

Rivest, Clifford Stein, "Introduction to Algorithms" MIT.

Press, Mcgraw-Hill Book Company, ISBN 0-262-03141-8,

1990.

[16] Michael L. Fredman, "New bounds on the complexity of

the shortest path Problem" ,SIAM Journal on Computing,

5(1):83–89, 1976.

[17] Tadao Takaoka, "A faster algorithm for the all-pairs

shortest path problem and its application" In K. -Y. Chwa

and J. I. Munro, Springer-Verlag LNCS Vol 3106, pp 278–

289.

[18] Barnes, M. a. (2003). Bioinformatics for Geneticists.

[19] http://en.wikipedia.org/wiki/DNA_sequencing. (n.d.).

[20] A. Murugan and B.Lavanya and K. Shyamala A Novel

Programming Approach for DNA Computing. International

Journal of Computational Intelligence Research, 7(2):199-

209, 2011.

