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Abstract  
 

The world leading standard for business reporting is XBRL, 

which stands for eXtensible Business Reporting Language. 

XBRL defines XML elements and attributes that can be used 

to encode business reports in a non-ambiguous way. None-

theless, XBRL provides only basic validation capabilities. 

To face this issue, an approach to validating the semantic 

correctness of financial reports written in XBRL is proposed. 

The idea is to represent the data present in XBRL reports by 

means of the logic-based formalism OntoDLP, which roots 
its semantics in the well–known paradigm of Answer set 

Programming. The expressive power of OntoDLP then used 

to model both simple and complex numerical validations on 

XBRL instances. The availability of efficient engines for 

evaluating OntoDLP programs enables the definition of a 

system architecture, where the all the methods proposed and 

discussed can be concretely implemented to support sophis-

ticated forms of reasoning over XBRL documents. 

 

Introduction 
 

The eXtensible Business Reporting Language (short: XBRL) 

is the world leading standard for business reporting. From 

the syntactical viewpoint, it belongs to the family of XML-

based languages. From the semantic viewpoint, data in 

XBRL is reported according to a number of different con-

ceptual dimensions, and a domain ontology is concretely 

made available in the specification as a reference metamodel 

[3]. In principle, the ontological annotations of the XBRL 

data might be used to support advanced forms of reasoning 
over the financial reports, such as in particular to check the 

correctness and the consistency of the results of arithmetic 

formulas involving financial variables. However, XBRL 

lacks of these advanced features and only very limited forms 

of semantic validation are available. 

Moving from the above observation, the paper investi-

gates the possibility of supporting validation of XBRL re-

ports by exploiting well-known reasoning methods and sys-

tems that have been developed to deal with enter-

prise/corporate ontologies, though not specifically XBRL. In 

fact, the use of ontologies to conceptualize business enter-
prise information has attracted much research in recent 

years. In particular, it has been observed that, in this context, 

standard ontology-based mechanism based on the open 

world assumption might be not appropriate, so that specific 

onology languages founding on the closed world assumption 

have been developed. Accordingly, we will hereinafter focus 
on the OntoDLP  language, which roots its semantics in the 

Answer Set Programming paradigm (and hence on the 

closed world assumption) [5], and which is supported in a 

powerful environment named OntoDLV  providing a user-

friendly visual environment and a robust persistency-layer. 

OntoDLP  supports all major ontology features includ-

ing classes, inheritance, relations and axioms. OntoDLP 

strongly typed, and includes also complex type constructors, 

like lists and sets. Moreover, OntoDLV a powerful interop-

erability mechanism with OWL, allowing the user to retrieve 

information from OWL ontologies, and build rule-based 

reasoning on top of OWL ontologies. The system is already 
used in a number of real-world applications including agent-

based systems, information extraction, and text classifica-

tion. Therefore, OntoDLP  is a rather solid candidate to con-

stitute the basis of a system supporting automatic validation 

of XBRL data in concrete application domains. This topic is 

addressed in the rest of the paper. 

In particular, in order to end up with a self-contained 

discussion, the next section will take a closer look at the 

main features of OntoDLP, then we will focus on the salient 

ingredients of the XBRL specifications. These two separate 

worlds will be eventually merged together in Section, where 
an approach to encode XBRL instances (and validation con-

straints defined over them) in terms of OntoDLP  specifica-

tion is presented. An appealing feature of the encoding is 

that the resulting OntoDLP  specification can be fed to the 

OntoDLV  system to check consistency of XBRL instances. 

This paves the way for the definition of a concrete system 

architecture to reason about XBRL instances on top of the 

OntoDLV  system, which is illustrated in Section. Finally, 

conclusions and a few remarks on interesting avenues for 

further research are drawn in Section. 

 

The Onto DLP  language 
 

In this section we overview OntoDLP, an ontology represen-

tation and reasoning language based on Disjunctive Logic 
Programming (DLP). We assume the reader familiar with 

DLP syntax and semantics [6], a nice introduction to DLP 

can be found in [5, 4]. In the following OntoDLP presented 

by means of a running example inspired by the one present-

ed in [8]. The description is limited to constructs that will be 

used in the remainder of this paper. An in-depth description 
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of OntoDLP be found in [8, 9]. 

Classes. The main construct in OntoDLP the (base) class. A 

base class models a collection of individuals who belong 

together because they share some properties. Classes are 

defined by using the keyword class followed by its name. 

Class attributes modeling instance properties are typed. They 

are specified by means of pairs attribute-

name:attribute-type, where attribute-name is 

the name of the property and attribute-type is the 

class the attribute belongs to. Attributes can also take values 

from the built-in classes string and integer (respec-

tively representing the class of all alphanumeric strings and 

the class of non-negative integers). As an example the fol-

lowing class declarations model basic concepts of a (toy) 
banking ontology: 

class bank(name:string, asset:integer). 

class account(balance:integer). 

class branch(bank:bank, location:place,  

asset:integer). 

class place(name:string). 

class enterprise(name:string,  

country:place). 

class person(name:string, age:integer,  

father:person, mother:person,  

residence:place).   

 

The above statements model that banks have a name 

and own an asset; the branches of a given bank are located 

into a given place and also have an asset; accounts have a 

balance; enterprises have a name and a country (which is a 

place); persons have name, age, residence (which is also a 

place), father and mother (which are other persons); and 

finally, each place has a name. Note that class definitions 

can be recursive (see attribute father of class person). 

Individuals. Class instances, called objects, model the indi-

viduals of a domain. Objects are uniquely identified by a 
constant called the object identifier (oid), and are declared 

by asserting logic facts. For example, the following state-

ments 

rome:place(name:"Rome"). 

john:person(name:"John", age:34,  

father:jack, mother:ann,  

residence:rome).  
 

.assert that rome and john are instances of the class 

place and person, respectively. The oid rome identifies 

a place named “Rome” that fills residence attributes. Thus 

john lives in Rome, and jack and ann are father, 

mother of john, respectively. 

Referential integrity and correctness of types is mandatory to 

write well-formed instances. e.g., rome has to be declared 

as a place identifier to properly fill residence attribute. 
Associations among objects. Relations define associations 

among objects. They are declared like classes, where the 

keyword relation (instead of class) precedes a list of attrib-

utes. As an example, we model a relationship between per-

sons and their bank account as follows:  

relation customerHoldsAccount( 

customer:person,  

account:account).   
 
The instances of a relation are called tuples, and are de-

clared by logic facts. For instance, to model that account 

acc001 is held by John, which holds account acc012 with 

Ann we write: 
customerHoldsAccount(customer:john,  

account:acc001). 

customerHoldsAccount(customer:ann,  

account:acc012). 

customerHoldsAccount(customer:john,  

account:acc012).   

 

Logic Programs. In addition to the ontology specification, 

logic programs can be written to declaratively specify prop-

erties and reason on ontological data. Logic programs are 

sets of logic rules. Logic rules are written according to the 

well-known Prolog conventions, where variables begin with 

uppercase letter, and terms by start by lowercase letter. The 

implication symbol :- can be intuitively read as “if”. Rules 

also may also feature disjunction v, negation as failure not, 

and aggregation functions (see [1] for more details). The 

rules can access the information present in the ontology. The 
programmer can introduce a number of auxiliary predicates 

(as paymentsNumber) which do not require an explicit 

schema definition. 

Rules can be collected in reasoning modules. reasoning 

modules are the language components Reasoning modules 

are identified by a name and are defined by a set of (possibly 
disjunctive) logic rules. Syntactically, the keyword module 

precedes the name which is followed by a logic program 

enclosed in curly brackets. As an example consider the fol-

lowing module, which computes the number of payments 

(withdrawals + deposits) performed on a bank account: 

 
module computePaymentsNumber { 

paymentsNumber(A, PayN) :-  

A:account(),  

#count{ W:withdrawals(A,W) }=Wnum,  

#count{ D:deposits(A,D) }=Dnum,  

PayN=Wnum+Dnum. 

} 

   
The logic rule can be read as follows: the payment 

number PayN associated to account A is computed by sum-

ming the number of deposits Dnum with the number of 

withdrawals Wnum associated to A. Note that the aggregate 
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#count is used to count withdrawals and deposits associat-

ed to a given account. 

Intensional constructs. The notions of class and relation 
introduced above correspond, from a database point of view, 

to the extensional part of the OntoDLP  language. Classes 

and relations can also be defined intensionally (as views in 

databases), in the sense that objects of a class can be “de-

rived” (or inferred) from the information already stated in an 

ontology. This is obtained by means of logic rules. As an 

example with the following statements 

class richPerson(name:string). 

P:richPerson(name:N)  

:- P:person(name:N),  

   A:account(balance:B), 

   holdsSavingsAccount(customer:P,  

     account:A), B > 1000000.  

  
class richPerson collects (or re-classify) instances of 

person, which are inferred by using a logic rule asserting 

that a person P is rich if he holds a savings account A with a 

balance B of more than one million. Intensional classes are 

called collection classes in OntoDLP. 

Importantly, the logic programs (set of rules) defining col-

lection classes must be normal and stratified (see eg., [2, 7]). 

Intensional relations are defined analogously. For ex-

ample, the binary relation relative (modeling the common 
ancestry among persons) is defined as follows:  

 
intensional relation  

relative (sub:person, obj:person). 

relative(sub:X,obj:Y) :- 

X:person(father:Y). 

relative(sub:X,obj:Y) :- 

X:person(mother:Y). 

relative(sub:X,obj:Y) :- 

relative(sub:X,obj:Z),   

relative(sub:Z,obj:Y).   
 
The above statements can be read as follows: X is rela-

tive of Y if X is parent of Y (by the first two rules), and X is a 

relative of Y if exists a third relative Z of X and Y (last rule). 

Taxonomies. Concepts in an ontology can be organized in 

taxonomies. For instance, employees are a special category 

of persons having extra attributes, like salary and company. 

OntoDLV taxonomies by means of the inheritance feature. 
For example the following statement 

class employee isa {person}  

(salary:integer, company:enterprise).  

 
defines employee as a specialization (or subclass) of a more 

generic concept or superclass, namely person. Attributes 

defined in person (i.e., name, age, father, mother, and resi-

dence) are inherited by employee, and are implicitly present 
with salary and company. Each OntoDLP has a common 

built-in superclass called object. 

Note that inheritance can be applied repeatedly, for ex-

ample 
class checkingAccount isa {account}  

(overdraftAmount:integer). 

class savingsAccount isa {account}  

(interestRate:integer). 

class goldAccount isa {checkingAccount}  

(minimumBalance: integer). 

class youngAccount  

isa {savingsAccount,checkingAccount}().   
 

models that bank accounts are divided in checking and sav-

ings accounts. Moreover, bank may offer two special types 

of checking account: gold account having a fixed minimum 

balance; and young account, which is reserved to customers 

aged up to 21 years, and is, at the same time, both a saving 

account and a checking account. Moreover, instances of em-

ployee are also instances of person. For example, the in-

stance:  

 
bob:employee(name:"Robert", age:25,  

father:jack, mother:betty,  

residence:rome, salary:2000,  

company:microsoft).   
 

is automatically considered an instance of person. 

Intensional relations and collection classes can also be orga-

nized in taxonomies.  

Axioms and Consistency. Axioms are a consistency-control 

construct modeling sentences that are always true. If an axi-
om is violated, the ontology is inconsistent, i.e., it contains 

information which is contradictory or not compliant with the 

domain’s intended perception. 

Axioms can be used for constraining the information 

contained in the ontology and verifying its correctness. The 

following axiom enforces that the father cannot be younger 

than his son as follows: 

 
::- X:person(age:AgeOfX,  

father:person(age:AgeOfFatherOfX),  

AgeOfFatherOfX < AgeOfX.   
 
This can be read literally as: “it is not possible that there 

is a person X having a father whose age is smaller than the 

one of his children”. 

 

XBRL 
 

XBRL stands for eXtensible Business Reporting Language. 

It is a XML-based language using tagging metadata to de-

scribe financial information. The language was introduced in 

1998, and since then it has become a standard means of 

communicating business reporting information between 
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businesses and government authorities. XBRL provides a 

language in which reporting terms can be authoritatively 

defined and referred uniquely in financial statements or oth-

er kinds of compliance, performance and business reports. 

XBRL documents are interchangeable between different 

information systems in entirely different organisations, and 

can cross the boundaries of different nations with different 

legislation. 

The core of XBRL is the XBRL2.1 specification, which 
defines the language w.r.t. three different layers. The most 

basic layer is the metadata layer, where the metamodel for 

the data that can be described with XBRL is made explicit. 

The second layer is the definition of the concepts referred in 

financial reports. At a technical level, concepts correspond 

to element definitions of an XML Schema. Basically, a con-

cept is a definition that provides the meaning for a piece of 

information contained in a report. An example of concept is 

“profit”. Related concept definitions are organized in hierar-

chies that are called taxonomies. Thus taxonomies capture 

the meaning contained in all of the reporting terms used in a 
business report, as well as the relationships between all of 

the terms. These typically correspond to particular reporting 

domains, and are usually produced by financial regulators 

agencies, accounting standards setters, government agencies 

and other groups with the goal of providing a clear and un-

ambiguous definition of the data to be written in a business 

report. Taxonomies can be freely added and linked to exist-

ing ones, and there is no limit on the concepts that can be 

added while extending existing XBRL definitions. For ex-

ample, international taxonomies may be extended by nation-

al regulators or large enterprises to meet specific reporting 

requirements or to model specific reporting needs. Concept 
definitions also define constraints (logical or mathematical 

business rules) on what can be reported, to ensure quality of 

reports. The semantics of concepts in a taxonomy, as well as 

the constraints to be satisfied are expressed by means of a 

linkbase. A linkbase is a collection of XML extended links 

based on the linking language XLINK. An XBRL Instance 

can refer to more than one taxonomy, and taxonomies can be 

interconnected, extended and modified in various ways. The 

set of related taxonomies is called a Discoverable Taxonomy 

Set (DTS). A DTS is a collection of Taxonomy Schemas and 

Linkbases. 
A taxonomy defines reporting Concepts, but it does not 

contain the actual values of facts based on the defined con-

cepts. The third layer of XBRL is in charge of representing 

the actual instances that are used to populate the schema 

defined in the second layer. The fact values are contained in 

XBRL Instances and are referred to as facts. Instance docu-

ments are collections of facts, which are statements of the 

form “profit for Acme Inc. in 2010 was $100m”. At a tech-

nical level, facts are represented by elements in an XML 

document. Besides the actual value of a fact, an instance 

provides contextual information necessary for interpreting it. 

XBRL provides a fixed set of built-in information to be re-

ported in a fact. These include a reference to the concept this 

fact is an instance of, the entity related to the fact, the period 

to which the statement refers to, and the unit of measure 

used for specifying the reported valued. 

A typical XBRL instance document, thus, reports a set 

of facts. Each item refer to a specific context (such as a 

company or an individual), and it defines the period of time 
to which the fact can be applied. Further contextual infor-

mation about the facts can be provided as scenarios, defining 

the units for the metrics and references to XBRL taxono-

mies.  

A number of different kinds of relationships can be ap-

plied to a given fact. To our ends here, the most interesting 

kind of relationships are those defines as calculation rela-

tionships, where the parent element can be defined as a func-

tion of the values known for its children.  

In fact, calculation relationships can be used for a num-

ber of different reasoning tasks, for instance, they might 
allow to compare the calculated total to the total that is de-

clared in the specification. More generally, calculation rela-

tionships are meant to enforce integrity constraints on the 

numerical data reported in the file. However, current valida-

tion systems for XBRL do not support sophisticated forms of 

reasoning over such relationships. In particular, they: 

 

• detect inconsistencies only among values that are of 

the same period type (instant or duration); 

• detect inconsistencies when facts are unreported, 

even though they are implicitly specified via suitable 

calculation rules; 

• do not propagate values along the taxonomy.  

Indeed, XBRL instances (as well as taxonomies and 

linkbases) must comply with the syntax requirements im-

posed by the XBRL specification, which are mostly ex-

pressed using XML Schemas. Compliance with the XBRL 

standard, as well as other checks that can be expressed by 

means of an XML Schema file can be performed using 

standard XML validation software. However, it might be the 

case that special validation requirements are required that 

cannot be expressed using XML Schemas, and these must be 

handled using other validation technologies. 

 

Logic-based Consistency Checking of 

XRBL Instances 
 

In this section we describe an approach for modeling XBRL 

instances and validation constraints in OntoDLP. Roughly 

the idea is to model the information present in an XBRL 
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instance in OntoDLP, and to use logic programming to mod-

el validation constraints and/or other business rules. 

In the following, we first present an OntoDLP that mod-

els XBRL instances, and then we show how constraints on 

the data of an XBRL instance can be modeled by means of 

OntoDLP. 

Modeling XBRL Instances. We now present an OntoDLP 

that models the information present in an XBRL instance. 

XBRL instances are stored in XML files. To improve reada-
bility, we will mention the constituent tags of an XBRL in-

stance and their corresponding concepts without explicitly 

presenting the verbose XML syntax. We first overview the 

main elements present in an XBRL instance, and then pre-

sent their OntoDLP. The representation is limited to ele-

ments that can be used for validating the information con-

tained in a business report, footnotes and other information 

needed for rendering graphically XBRL instances is pur-

posely not considered in our model. We refer the reader to 

the XBRL specification available on the Internet [3] for the 

details. 

Single facts or business measurement reported in an XBRL 

instance file are stored in items. Each item usually holds a 

value and always refers to a context. The context contains 

information about the entity being described, the reporting 

period and optionally a scenario that models the different 

reporting purposes (e.g., actual, pro forma, budgeted) of a 

business facts. The context basically associates a business 

fact captured as an XBRL item with its meaning and locates 

it w.r.t. time and other contextual information. The entity 

documents the business, government department, individual, 

etc. that fact describes, and may be associated with an op-

tional segment to identify the business segment more com-
pletely in cases where the Entity identifier is insufficient. 

The period models the instant or interval of time for refer-

ence by an item, and it can be specified by reporting begin-

ning and ending dates, a specific instant, or it can be set to 

forever (when a datum is not dependent of time). 

XBRL items can be numeric, non numeric, or tuples. 

Tuples allow to aggregate facts that cannot be independently 

understood, e.g., because multiple occurrences of that fact 

are being reported. Tuples have complex content and can be 

made of items and other tuples. Numeric items are associat-

ed with a unit of measure (e.g., USD, EUR, number of 
shares) and may be reported either with a precision (number 

of digits counting from the left to be considered trustworthy) 

or with a number of decimal places to which the value of the 

fact represented may be considered accurate. 

The elements of an XBRL instance can be modeled by 

the following OntoDLP : 

 
class Entity ( identifier:string,  

identifierScheme:URI ) 

class Context ( entity:Entity,  

period:Period ) 

class Period ( starting:Date,  

ending:Date ) 

class Instant ( date:Date ) {  

X:Instant( date:Date ) :-  

X:Period( starting:Date,  

ending:Date ).  

} 

forever:Period (  

starting:"0000-00-00",  

ending:"0000-00-00" ). 

relation Segment (  

context:Context,  

element:SegmentElement )  

class SegmentElement (  

name:string, value: XSDType ) 

relation containsSegmentElement (  

parent:SegmentElement,  

child:SegmentElement ) 

relation Scenario (  

context:Context,  

element:ScenarioElement )  

class ScenarioElement (  

name:string,  

value: XSDType ) 

relation containsScenarioElement (  

parent:ScenarioElement,  

child:ScenarioElement ) 

class Item (  

name:string ) 

class NumericItem isa { Item } (  

unit:Unit, value: XBRLNumeric ) 

relation Precision (  

item:NumericItem, value:integer ) 

relation Decimals (  

item:NumericItem, value:integer ) 

class NonNumericItem isa { Item }  

(value:string ) 

class Tuple isa { Item }() 

relation TupleContainsItem (  

container:Tuple,  

contains:Item ) 

 

Basically, almost all elements are modeled by an 

OntoDLP, and associations among elements are modeled by 

relations. Given an XBRL instance file, each element can be 

translated in the corresponding instance fact in OntoDLP. 

Object ids can be valued either by taking the id associated 

with the corresponding elements, or by using a proper gen-

eration strategy (e.g., based on a sequence generator). 

More in detail, XBRL entities refer to the corresponding 

term in a taxonomy by means of an identifier and of a URI 

pointing to the namespace of the identification scheme. For 

example: 
 
<identifier  

        scheme="http://www.nasdaq.com"> 

        SAMP</identifier>   

 

identifies the company with NASDAQ ticker symbol SAMP 

is modeled in OntoDLP : 



International Journal of Advanced Computer Technology (IJACT)        
ISSN:2319-7900 

131 

 
LOGIC-BASED CONSISTENCY CHECKING OF XRBL INSTANCES 

 
samp:Entity( identifier:"SAMP",  

   identifierScheme:"http://www.nasdaq.com"  
  
Items are instances of the Item class, which features a sub-
class for each specific type of element. 

For example the following two are items: 

 
<ci:capitalLeases contextRef="c1"  

unitRef="u1" precision="3"> 

727432 

</ci:capitalLeases>  

<ci:concentrationsNote contextRef="c1">  

Concentration of credit risk with regard 

to short term investments is not  considered  

to  be  significant due  to the Company’s 

cash management policies. ... 

</ci:concentrationsNote>   
 
The first is a numeric one means that Capital Leases in 

context c1 is 727000 accurate to 3 significant figures. The 

second reports a textual note concerning context c1. These 

are modeled in OntoDLP follows: 

 
capitalLeases01: NumericItem(  

name:"ci:capitalLeases", unit:u1,  

value: 727432). 

Precision(item:capitalLeases,  

value:3 ).   

concentrationsNote01: NonNumeriItem (  

name:"ci:concentrationsNote",  

value: "Concentration of  

credit risk with regard to short   

term investments is not   

considered to be significant due   

to the Company’s cash  

management policies. ... ").   
 
In turn, contexts associated using instances of the class 

concept, and in our example c1 could be as follows: 

 
c1:Context( entity:samp,  

    period:forever ).   
 

A similar procedure can be applied for all the other 

enities, for instance the following scenario is associated to 

context c1 

 
<scenario> 

  <other:bestEstimate/> 

  <fid:dwSlice> 

    <fid:residence>MA</fid:residence> 

    <fid:nonSmoker>true</fid:nonSmoker> 

    <fid:minAge>34</fid:minAge> 

    <fid:maxAge>49</fid:maxAge> 

    </fid:dwSlice> 

</scenario>   

 
to indicate that the reported values relate to a "best esti-

mate" scenario for non-smokers residing in Massachusetts of 

the specified age group. This is represented in OntoDLP 
follows: 

 
Scenario( context:c1,  

element: otherbest1 ). 

Scenario( context:c1,  

element: dwSlice1 ). 

otherbest1:ScenarioElement (  

name:"other:bestEstimate",  

value:"" ). 

dwSlice1:ScenarioElement (  

name:"fid:dwSlice",  

value:"" ). 

dwResidence1:ScenarioElement (  

name:"fid:residence",  

value:"MA" ). 

dwSmoker1:ScenarioElement (  

name:"fid:nonSmoker",  

value:true ).  

dwminage1:ScenarioElement (  

name:"fid:minAge",  

value:34 ).  

dwminage1:ScenarioElement (  

name:"fid:maxAge",  

value:49 ). 

containsSegmentElement (  

parent:dwSlice1,  

child:dwResidence1). 

containsSegmentElement (  

parent:dwSlice1,  

child:dwSmoker1). 

containsSegmentElement (  

parent:dwSlice1,  

child:dwminage1). 

containsSegmentElement (  

parent:dwSlice1,  

child:dwminage1). 

 

Basically, an instance of this ontology can then be popu-

lated efficiently by analyzing an XBRL file and asserting 

properly the objects of the ontology. 

   

 

Figure 1: Validating XBRL Instances via OntoDLV . 

Modeling Validation. XBRL instances must comply with 
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the requirements imposed by the XBRL specification, as 

well as the must be coherent with the information modeled 

by a DTS. Clearly, validation requirements may go beyond 

the mere syntactical check that can be obtained by validating 

an XML file w.r.t. an XML Schema, and so the standard 

mandates that they must be handled using other validation 

technologies. 

As previously pointed out we are mostly interested in 

calculation relationships, which may be defined by in a 
linkbase. These can be modeled by a combination of logic 

rules and OntoDLP.  

First of all we point out that calculation arcs of a 

linkbase can be easily modeled by axioms. For example 

 
<calculationArc xlink:type="arc" 

  xlink:arcrole="http://www.xbrl.org/ 

  2003/arcrole/summation-item" 

  xlink:from="totalPrepaidExpenses"  

  xlink:to="prepaidExpenses"  

  weight="1.0"/>   
 
requiring to sum (with weight of one) prepaid expenses 

items into current assets can be expressed as: 

 
::- not  #sum{V,I : X:NumericItem(  

name:"prepaidExpenses", value:V)}=CS,  

NumericItem(name:"totalPrepaidExpenses",  

value:CS). 

 

This process can be generalized, and an axiom having in 
the body a #sum aggregate properly filled by elements to be 

accumulated can be produced automatically by translating 

the this part of the linkbase in OntoDLP. 

 
 relation summationArc (  
   from:Entity, to:Entity )  

summationArc(  

  from:totalPrepaidExpenses,  

to:prepaidExpenses, weight:1). 

::- not  

  #sum{V,I : F:NumericItem(value:V)}=CSW,  

  CSW=CS*W, T:NumericItem(value:CS),  

  summationArc(from:F, to:T,  

  weight:W). 

 

where summation arcs are represented by a relation in 

OntoDLP. Analogously other linkbase arcs can be encoded 

by means of OntoDLP, and can be exploited for modeling 

constraints that are not checked by a pure syntactic validator, 

such as items and values that can be inferred through es-

sence-alias relationships. 

Additional constraints, that go beyond what can be ex-

pressed using a linkbase, can be specified directly using log-

ic programming. For example there is the possibility of ac-

cessing data specified in XBRL taxonomies, and we can 
exploit it for encoding properties where the parent element 

can be defined as a function of the values known for its chil-

dren.  

The information present in the DTS can be used to en-

rich our ontology by populating the isA relation, that can be 

used to model the structure of a taxonomy. Then the isA 

relation can be exploited in constraints, for example the 

above constraint can be extended to sum over all 

subconcepts of a given concept as follows: 

 
relation isA ( super:Entity,  

sub:Entity )  

isA(super: X, sub:Z) :-  

isA(super: X, sub:Y ),  

isA(super: X, sub:Z ). 

isA( super: Expenses,  

sub:prepaidExpenses ). 

::- not  

 #sum{V,I : F:NumericItem(value:V)}=CSW,  

CSW=CS*W, T:NumericItem(value:CS),  

summationArc(from:F, to:TS,  

weight:W), isA(super: TS, sub:T). 

 

Clearly, besides constraints asserted in linkbases, one 

may think to design more complex requirements by exploit-

ing logic rules and axioms. These can be easily added to the 
ontology, which thus provides a mean of implementing (us-

ing a declarative language) involved consistency checks on 

XBRL instances. 

 

System Architecture 
 

We propose a logic-based approach to validation of XBRL 

instances. The architecture of a system implementing our 

approach is depicted in Figure 1. The validator takes in input 

a number of XBRL Instance documents. The first module 

applies standard XML processing technology to (i) discover 

the Discoverable Taxonomy Set (DTS) associated with the 

input documents; and (ii) applies the syntactic checks of 

conformance with the files in the discovered DTS. Recall 

that a DTS is a collection of taxonomy schemas and 
linkbases. The bounds of a DTS are such that the DTS in-

cludes all taxonomy schemas and linkbases that can be dis-

covered starting from the instance files, and following links 

or references in the taxonomy schemas and linkbases includ-

ed in the DTS. The DTS discovery process is fully described 

in the XBRL specification [3]. Concerning the syntactic 

checks, these include the basic validation of instance docu-

ments w.r.t. the XML schemas defining taxonomies, as well 

as a number of other syntactical coherence tests. The result 

of these preliminary test are immediately printed in the final 

validation report. In case this first validation succeeds, the 
discovered DTS together with the input instances are passed 

to the next modules which are the kernel part of out logic-

based approach to validating XBRL instances. In particular, 

these are read and processed by the OntoDLP module. The 
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encoder creates an instance of the XBRL ontology described 

in previous section, modeling to the input documents and 

their constraints. Basically suitable logic facts model XBRL 

facts, and a number of logic rules and axioms model the val-

idation to be performed. This specification is fed as input to 

the OntoDLV which executes an ontology consistency 

checking task. The result of this checking step is used to 

produce he final report, which will include also suitable mo-

tivations in case of failure of some specific axiom. 
Note that the architecture depicted in Figure 1 can be 

easily extended to incorporate additional checks, which may 

be specified either in OntoDLP by using other technologies, 

such as XSLT transformations. Indeed, the syntax checking 

and discovery module can be cascaded with other validation 

software, e.g., running XSLT specifications, that produce 

additional information to be added to the final report. More-

over, the OntoDLP can be configured to receive additional 

reasoning modules that performing complex checks directly-

specified in in logic that, for instance, cannot not be modeled 

using current XBRL specifications. 

 

Conclusion and Ongoing work 
 

In this paper we have approached the problem of validating 
financial reports written in XBRL by using logic-based 

technologies. The idea is to represent by means of a logic-

based language called OntoDLP data present in XBRL in-

stance documents. The expressive power of OntoDLP then 

used to model both simple and complex numerical valida-

tions on XBRL instances. This paper paves the way for de-

veloping an advanced system for validating XBRL instanc-

es. 

As far as future work is concerned, we plan to properly 

extend it to cope with all features of XBRL (e.g., supporting 

multi-dimensional instance sets), and we will design a li-
brary of logic programs containing general purpose valida-

tion constraints. Moreover, we plan to implement our pro-

posal by exploiting the OntoDLV and to experiment with in 

on real-world XBRL instances. 
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