
International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

33

PARALLEL COMPUTING WITH GPU’S FOR HIGH SPEED MONTE CARLO SIMULATIONS USING FPGA

PARALLEL COMPUTING WITH GPU’S FOR HIGH SPEED

MONTE CARLO SIMULATIONS USING FPGA

N. Bhavya Raj, M. Tech., CMRIT, Bangalore, India

Abstract

In present day technologies, due to the increase in number

of elements present in a device. The performance of the de-

vice is also very important. To increase the performance of a

device, the computations must be very fast. To achieve high

computational time, here we are using Monte Carlo (MC)
methods. Monte Carlo simulations are statistical methods,

which require particular computation time. It can keep track

of multiple physical quantities at a time simultaneously with

desired spatial resolution. This is the main advantage, which

makes Monte Carlo simulations a powerful method. Monte

Carlo methods are considered to be the standard for simulat-

ed measurements of processing an image by photon

transport for many medical applications. Monte Carlo simu-

lations are now a much-used scientific tool for problems that

are analytically intractable and for which experimentation is

too time-consuming, costly, or impractical. This paper pre-
sents compute architecture for high speed Monte Carlo

simulations using parallel processing”

Key Words

 Monte Carlo simulations, parallel computing

Introduction

A Graphical Processing Unit (GPU) is an electronic cir-
cuit, which is designed for rapidly manipulating and altering

the memory for accelerating the creation of images in a

frame which is to be displayed as an output. Modern GPUs

are most efficient in manipulating computer graphics. GPUs

have parallel structures, which makes them more effective

than general purpose CPUs (Central Processing Units) for

algorithms where processing of large block of data is done in

parallel. GPUs are used in embedded systems, mobile

phones, personal computers, work stations, and game con-

soles. FPGAs (Field Programmable Gate Array) are pro-

grammable semiconductor devices that are based around a
matrix of Configurable Logic Blocks (CLBs) connected

through programmable interconnects. FPGAs can be pro-

grammed to the desired application or functionality require-

ments. Although One-Time Programmable (OTP) FPGAs

are available, the dominant types are SRAM-based which

can be reprogrammed as the design evolves.

Parallel processing is a computational form, in which cal-

culations are carried out simultaneously. It operates on the

principle that large instructions can be divided into smaller

ones, which can be solved in parallel. Different forms of

parallel processing are: bit-level, instruction level, data level,

and task level parallelism. Parallelism has been mainly used

for high performance computing. Due to the physical con-

straints preventing frequency scaling, the interest in it has
developed very lately. As power consumption by computers

has become a concern in recent years, parallel computing

has become dominant in computer architecture, mainly in

the form of multi-core processors.

Figure1. Parallel Computation Processes

Monte Carlo simulations

Monte Carlo simulations are a class of computational al-

gorithms which depends on repeated random sampling.

Working principle of these simulations is, it runs many times

in order to obtain the distribution of an unknown probabilis-

tic entity. Monte Carlo methods are mainly used in three

distinct problem classes: optimization, numerical integra-

tion and generation of draws from a probability distribution.
It is true that MC simulations are good for parallelization, as

basically they are comprised of huge numbers of independ-

ent experiments. These algorithms are executed by computer

programs. Even though computer speed has been increasing

drastically, Variance Reduction Techniques (VRTs) are

needed. Increased computational power has initialised the

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

34

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 3,

analysts to develop more realistic models, such that the final

result has not been faster than execution of simulation exper-

iments. For example, some modern simulation models need

hours or days for a single program to run. Because of this,

modern computer would take more time to execute a single

program. Variance reduction techniques can reduce these

excessively long runtimes to practical levels.

Algorithmic verification

Algorithmic verification involves three different tasks,
which are requirements specification, building executable

system models, and developing scalable algorithms. Re-

quirements characterize the expected behavior of a system.

Verification methods require techniques for building execut-

able models that faithfully represent a system or an abstrac-

tion of it. Algorithm verification can be done in any lan-

guage such as C, C++, java, MATLAB (MATrix LABorato-

ry). Here, we are verifying the algorithm using MATLAB,

which computes in a numerical computing environment. It

allows matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces,

and interfacing with programs written in other languages.
MATLAB is a high-performance language for technical

computing, which integrates computation, visualization, and

programming environment. These factors make MATLAB

an excellent tool for research.

Image Processing

Image processing is a form of signal processing for which

the input is an image. The output of image processing may

be either an image or a set of characteristics or parame-

ters related to the image. An image may be considered to

contain sub-images sometimes referred to as regions-of-

interest, ROIs, or simply regions. This concept reflects the

fact that images frequently contain collections of objects

each of which can be the basis for a region. Before pro-
cessing an image, it is converted into a digital form. After

converting the image into bit information, processing is per-

formed. This processing technique could be an Image en-

hancement, Image restoration, and Image compression.

A color image is a digital image that includes color infor-

mation for each pixel. For visually acceptable results, it is

necessary to provide three samples for each pixel.

A grayscale image is an image in which the value of

each pixel is a single sample, which carries only intensity

information. They are mainly composed of gray shades, var-

ying from black at the weakest intensity to white at the

strongest. Whereas, black/ white (binary) image is a digital

image that has only two possible values for each pixel. An

entire class of operations on binary images operates on a 3×3

window of the image. This contains nine pixels, so 512 pos-

sible values. Considering only the central pixel, it is possible

to define whether it remains set or unset, based on the sur-
rounding pixels.

Project Description

This section describes about the system which is used for

increasing the speed of the Monte Carlo simulations using

parallel computing.

The Figure 2 shows the network and interconnection of

each GPU which are used for parallel processing. Here, an
image is taken which is divided equally into 3x3 blocks ac-

cording to the concept of parallel processing. Each block is

sent in parallel such that every data should be accessible by

every element of the shared data set of a GPU for pro-

cessing. Care must be taken such that the data is shared

equally among the GPUs to avoid data starvation. To avoid

this there should be connection between the Processing

Units (PUs). This motivated to pair every PU to a ‘switch’

that would connect it to the communication fabric.

Figure 2. Network of Parallel Processing

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

35

PARALLEL COMPUTING WITH GPU’S FOR HIGH SPEED MONTE CARLO SIMULATIONS USING FPGA

Block Diagram

The block diagram of the system which is used is shown

in the Figure 3. Here, we are taking two images of which

one is healthy and other is unhealthy. That is one image is

reference image and the other is the image which is to be

reconstructed that is unhealthy image. Next is the process of

acquiring the image and splitting the whole image into 3x3

blocks. After splitting the image into 3x3 blocks, the image

is given to the network node. In this node at a time, 9 pixels
will be taken. Along with the node, an internal CORDIC

processor is present; this is the network where the processing

can be done faster. Here, the node performs the operation of

how the data is to be transferred.

The main operation is performed by the CORDIC proces-

sor. CORDIC calculates the sin of the angle in terms of radi-

ans. For calculation of the angle in terms of sin for given

input pixel, we are using CORDIC. The result for the given

image will be stored in terms of sin. The same process will

be carried by the unhealthy image and, we get the other sin

value. By using these two sin values, we are performing
Normalised Cross Correlation (NCC). Based on the cross

correlated values, it will be calculated how much the healthy

and unhealthy images are correlated. Since, we cannot create

a 3D graphical image, we are checking how much unhealthy

the image is when compared to the healthy image. Imple-

mentation of this simulation is called Monte Carlo simula-

tion.

The basic CORDIC computations are expressed by the it-

erative equations at ith step as follows

Xi+1 = Ki (Xi – mσi2
-s (m, i) Yi) (1)

Yi+1 = Ki (Yi + σi2
-s (m, i) Xi) (2)

Zi+1 = Zi – σiαm,i (3)

Where i = 0, 1, …, N-1. The number of iterations ‘N’ will

decide the fractional bit accuracy of the final result obtained,
‘m’ parameter stands for one of the three coordinate systems

namely linear, circular and hyperbolic (for m = 0, 1 and -1

respectively) and S(m, i) is shift sequence having values 0,1,

… ,N-1. Scale factor ‘k’ remains constant for a particular

computer if all rotations from 0 to N-1are completed. Pa-

rameter ‘a’ is angle, by which a vector is rotated in ith step

and is given by,

αi = tan-1 2-i (4)

The parameter takes two vales, -1 and 1. If Z, the input

angle, is left positive in a particular iteration step then its
value is 1 otherwise -1.

Architectural Description

This section describes briefly about the internal architec-

ture of the processing units and its interconnection.

The processing unit mainly consists of 3 blocks, which are

arbiter, CORDIC and LFSR. There will be a node present in

each PU to control the flow of inputs and outputs to and

from the other processing elements. A switch is present to

access the data between the two processors. To calculate the

trigonometric ratio, a trig unit is required which is relatively

expensive in terms of hardware resources. The trig unit is

based on the well-documented CORDIC algorithm. The pro-

cessing unit for this dissertation can be as shown in Figure 2.

Figure3. Block Diagram of the System Used

CORDIC Processor

CORDIC (Coordinate Rotation Digital Computer), is an

efficient algorithm used to calculate the hyperbolic and trig-

onometric functions. It is commonly used when no hardware

multiplier is available as the operations it requires are addi-

tion, subtraction, bit shift and lookup table. CORDIC pro-

cessor computes a number of functions including sine and

cosine of angles.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

36

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 3,

Figure 4 shows the basic architecture of the CORDIC pro-

cessor. Arctangent values are constant and they are stored in

ROM. For the iteration to go from i
th

 stage to (i+1)
th

 stage,

the sign of Zi has to be predetermined. Adder/subtracter is

the only computational unit in Z- data path, latency of this

architecture is determined by the latency of the ad-

der/subtracter module. The delay time of the redundant ad-
der is independent of the size of word and is approximately

equal to delay time of two full adders. However, use of re-

dundant number increases the hardware overhead and also it

makes scale factor variable which has to be computed in

each of the iterations.

Figure 4. CORDIC Processor Structure

Arbiter

A bus arbiter (BA) is a device used in a multi-

master bus system to decide which bus master will be al-

lowed to control the bus for each bus cycle. The most com-

mon kind of bus arbiter is the memory arbiter in a system

bus system. A memory arbiter is a device used in a shared
memory system to decide, for each memory cycle, which

CPU will be allowed to access that shared memory. An im-

portant form of arbiter is used in asynchronous circuits to

select the order of access to a shared resource among asyn-

chronous requests. Its function is to prevent two operations

from occurring at once without overlapping. Given only one

request, an Arbiter promptly permits the corresponding ac-

tion, delaying any second request until the first action is

completed. When an Arbiter gets two requests at once, it

must decide which request to grant first. For example, when

two processors request access to a shared memory at approx-
imately the same time, the Arbiter puts the requests into one

order or the other, granting access to only one processor at a

time. The working principle and structure of the arbiter is

sown in the figure below.

The generated BA consists of a D flip-flop, priority logic

blocks, an M-bit ring counter and ‘M’ M-input OR gates as

shown in Figure 6, where M=3. A 3x3 priority logic block

is implemented in combinational logic implementing the

logic function. The priorities of inputs are placed in de-

scending order from in (0) to in (2) in the priority logic

blocks (Priority Logic 0 through 2). Thus, in (0) has the
highest priority; in (1) has the next priority, and so on. To

implement a BA, we employ the token concept from a token

ring in a network. The possession of the token allows a pri-

ority logic block to be enabled. Since each priority logic

block has a different order of inputs (request signals), the

priority of request signals varies with the chosen priority

logic block.

Figure6. Basic Structure of Arbiter

Linear Feedback Shift Register

A linear-feedback shift register (LFSR) is a shift regis-

ter whose input bit is a linear function of its previous state.
The most commonly used linear function of single bits

is exclusive-or (XOR). Thus, an LFSR is most often a shift

register whose input bit is driven by the XOR of some bits of

the overall shift register value. LFSRs sequence through (2N

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

37

PARALLEL COMPUTING WITH GPU’S FOR HIGH SPEED MONTE CARLO SIMULATIONS USING FPGA

− 1) states, where N is the number of registers in the LFSR.

The contents of the registers are shifted right by one position

at each clock cycle.

The linear feedback shift register is made up of two parts:

a shift register and a feedback function. The shift register is

initialized with n bits (called the key), and each time a key
stream bit is required, all of the bits in the register are shifted

1 bit to the right. So the least significant bit is the output bit.

The new left-most bit is computed as the XOR of certain bits

in the register. This arrangement can potentially produce a

2n-1 bit-long pseudo-random sequence (referred to as the

period) before repeating.

Figure7. Linear Feedback Shift Register

Node and Switch

The size of the network has significant influence on the

decision for the routing and switching strategies that were

selected. One of the best strategies for guaranteeing no data

loss in the network with relatively few resources is the
Wormhole (WH) switching technique. We have implement-

ed a slightly modified version of WH that trades some net-

work resources for overall network throughput, thus leaving

latency unaffected.

Figure8. Node of the Network

FPGA Implementation and Results

FPGA or Field Programmable Gate Arrays can be pro-

grammed or configured by the user or designer after manu-
facturing and during implementation. Hence they are other-

wise known as On-Site programmable. Unlike a Program-

mable Array Logic (PAL) or other programmable device,

their structure is similar to that of a gate-array or an ASIC.

Thus, they are used to rapidly prototype ASICs, or as a sub-

stitute for places where an ASIC will eventually be used.

This is done when it is important to get the design to the

market first. Later on, when the ASIC is produced in bulk to

reduce the NRE cost, it can replace the FPGA. The pro-

gramming of the FPGA is done using a logic circuit diagram

or a source code using a Hardware Description Language

(HDL) to specify how the chip should work.

The process which is described in the block diagram is

implemented. After obtaining the values of the healthy and

unhealthy images, both the images are cross correlated and

the output obtained after correlating the healthy and un-

healthy images is as shown in figure below. The black lines

represent the dissimilarities in the healthy and unhealthy

images.

Figure9. Obtained Correlated Image

The following table 1 describes about the utilization of the

devices used in this system. Which includes number of de-

vices used available devices and the percentage of the device

utilization. Table 2 gives a brief idea about the performance
summary.

International Journal of Advanced Computer Technology (IJACT)
ISSN:2319-7900

38

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 3,

Table1. Device Utilization

 Used
devices

Available
devices

 Utiliza-
tion

Registers 1,730 7,168 24%

Input
LUTs

2,803 7,168 39%

No. of
slices

1,459 3,584 40%

Target
Device

XC3S400

 NA NA

Table2. Performance Summary

Conclusion

In this dissertation, we have implemented architecture for

the GPUs to be computed in parallel for increasing the speed

of Monte Carlo simulations. Since, we are using parallel

processing; the speed of the simulations will increase to the

considerable extent. The main process of the proposed sys-

tem will be carried out by the Cordic processor. This imple-

mentation of the CORDIC algorithm allows the device to

perform in increased speeds. The significant speedups can be

achieved over single core implementations, without com-

promising the image reconstruction accuracy.

Disadvantages

There is a drawback in this approach. The drawback of

this architecture is that the obtained image cannot be realized

properly. It means that, it is very hard to analyze the recon-

structed image as it is represented in black and white lines,

representing the similarities and dissimilarities obtained.

References

[1] F.J. Beekman, H.W.A.M. de Jong and S. Van Geloven,

“Efficient Fully 3D Iterative SPECT Reconstruction

With Monte Carlo- Based Scatter Compensation,” IEEE

Trans. Medical Imaging, vol. 21, no. 8, pp. 867-877,

Aug. 2002.

[2] C. M. Kao and X. Pan, “Evaluation of Analytical Meth-

ods for Fast and Accurate Image Reconstruction in 3D

SPECT,” Proc. IEEE Nuclear Science Symp. Conf.
Record, vol. 3, pp. 1599-1603, 1998.

[3] S. Zhao and C. Zhou, “Accelerating Spatial Clustering

Detection of Epidemic Disease with Graphics Pro-

cessing Unit,” Proc. 18th Int’l Conf. Conf.

Geoinformatics, pp. 1-6, June 2010.

[4] L. Xu, M. Taufer, S. Collins, and D.G. Vlachos, “Paral-

lelization of Tau-Leap Coarse-Grained Monte Carlo

Simulations on GPUs,” Proc. IEEE Int’l Symp. Parallel

Distributed Processing (IPDPS), pp. 19, Apr. 2010.

[5] F. Angarita, A. Perez-Pascual, T. Sansaloni, and J.

Vails, “Efficient FPGA Implementation of Cordic Algo-
rithm for Circular and Linear Coordinates,” Proc. Int’l

Conf. Field Programmable Logic and Applications, pp.

535-538, Aug. 2005.

[6] Jack E Volder, “The CORDIC Trigonometric Compu-

ting Technique” , pp 226,1959.

[7] Phillip J. Kinsman, Student Member, IEEE, and Nicola

Nicolici, Senior Member, IEEE “NoC-Based FPGA Ac-

celeration for Monte Carlo Simulations with Applica-

tions to SPECT Imaging” IEEE TRANSACTIONS ON

COMPUTERS, VOL. 62, NO. 3, MARCH 2013

 Parameters present work

Frequency (max.)

Minimum Time Period

Delay

167.479MHZ

5.971ns

2.278ns

