
International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

63

RECOVERING TRACE LINKS FOR SYSML MODELS USING VSM-BASED INFORMATION RETRIEVAL

RECOVERING TRACE LINKS

FOR SYSML MODELS USING VSM-BASED

INFORMATION RETRIEVAL

Yoshihisa UDAGAWA,

Faculty of Engineering, Tokyo Polytechnic University

Abstract

Automated traceability recovery utilizing information re-

trieval techniques has been recognized as important for ef-

fective software development. In this paper, we discuss two

approaches for augmenting the vector space model (VSM).

The first approach employs document identifiers of a term,

indicating where the term has been found, and a context-

sensitive retrieval strategy that uses these identifiers. The

other approach deals with a set of closely related terms

called “family terms” in a query, which are used to adjust
document vectors. We assume that requirements and design

models are written in accordance with SysML specifications.

Our approach can be used to check consistency among re-

quirements and component models, including database mod-

els, screen transaction models, and process models. We per-

form two sets of experiments for computing the term weight

using term frequency weighting and term frequency–inverse

document frequency (tf–idf) weighting. The experimental

results show that the enhanced trace retrieval models achieve

higher recall and precision than the traditional VSM. In ad-

dition, our enhancements are independent of the tf–idf term

weighting schema.

 Keywords: Requirements traceability, SysML, Vec-

tor space model, Information retrieval, Family terms, Re-
quirements engineering

1 Introduction

 Maintaining traceability across software artifacts can be

helpful for a number of tasks. Traceability links between

requirements and a set of design documents allow develop-

ers to discover dependencies that exist among software arti-

facts and assess consistencies of the artifacts with respect to
stated requirements.

There has been growing interest in requirements traceabil-

ity in the software engineering research community, aca-

demia, and industry. The extent of traceability practice re-

flects a measure of software quality and process maturity.

Thus, requirements traceability is mandated by many stand-

ards such as CMMI-DEV [1], systems engineering guide-
books [2] [3], and ISO/IEC/IEEE standards concerning sys-

tems and software engineering [4].

Recently, the need for automatic traceability recovery has

been widely recognized. In particular, several authors have

applied information retrieval techniques to automatically

recover traceability links among artifacts. The rationale be-

hind such techniques is that most software documentation is

text based or contains textual descriptions. Thus, two arti-

facts with high textual similarity are likely reasonable trac-

ing candidates.

Regardless of its importance, support for traceability has
been inadequate. Automated traceability recovery techniques

have faced major open research challenges: ways to a) ex-

tract links from relevant artifacts during software develop-

ment, and b) improve the precision of retrieval results. To

address these issues, we focus on:

(1) Using a standard modeling language to formalize or

semi-formalize artifacts in software development.

(2) Improving accuracy of information retrieval techniques.

Obviously, the degree of similarity measures strongly de-

pends on how accurately documents are described. Describ-

ing artifacts according to a standard is a fundamental step for
successful automated traceability recovery. There are many

methods to specify requirements and design artifacts. We

have employed the OMG System Modeling Language

(SysML) [5], which supports system development life cycles,

including specification, design, verification, and validation

of a broad range of systems. SysML also provides several

traceability links such as refine, satisfy, and verify relation-

ships. SysML is becoming the de facto standard in system

engineering.

Maeder et al. [6] discussed a traceability link model for the

requirements and implementation phases in the Unified Pro-

cess. They proposed a set of rules for verification of tracea-
bility links. However this set of rules is limited to checking

the pure existence of traceability links. Briand et al. [7] dis-

cussed a mechanism to model traceability between textual

requirements and design models to inspect requirements–

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

64

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

design compliance. The approach is based on model slicing
that filters out irrelevant details while maintaining sufficient

context information. However, the slices may be inconclu-

sive due to incompleteness. Delgoshaei et al. [8] proposed an

approach to requirements traceability using semantic plat-

forms in model-based systems engineering development.

The proposed platform integrates traceability mechanisms

with domain-specific ontologies, a set of rules for design

rule checking, and artifacts modeled in SysML.

Improving information retrieval accuracy is another issue.

Hayes et al. [9] used a vector space model (VSM) augment-

ed by a thesaurus and developed a prototype tool called

RETRO. Their results show that the augmented VSM out-
performs a classical VSM in terms of recall, but it has the

same precision performance. Several studies have discussed

other information retrieval techniques, including latent se-

mantic indexing (LSI), which is a variant of VSM, to recov-

er traceability links among requirements, design documents,

source codes, and test cases [10][11][12]. The results of the-

se studies demonstrate the usefulness of LSI techniques for

recovering traceability among software artifacts. Zisman et

al. [13] presented an approach for automatic generation of

traceability relations between requirements expressed in

English and object models expressed in UML. Their ap-
proach results in recall and precision rates of 95% and 94%

at the high end, and 46% and 52% at the low end. They used

heuristic traceability rules that match syntactically related

terms in the textual parts of the requirements with those of

requirements object models. Cleland-Huang et al. [14] intro-

duced three strategies to improve the performance of the

dynamic requirements traceability, i.e., hierarchical model-

ing, logical clustering of artifacts, and semi-automatic prun-

ing of the probabilistic network. Asuncion et al. [15] pro-

posed an approach based on a combination of automated link

capture and a machine-learning technique known as topic

modeling. The learned model allows semantic categorization
of artifacts and the topical visualization of the software sys-

tem. Zhou et al. [16] discussed an improved VSM using

requirements context information, such as title, precondition,

and postcondition. They proposed a weighted knowledge

model to combine the results of context analysis and func-

tional analysis.

Although significant effort has been devoted to automatic

traceability recovery, a challenging issue still remains be-

cause of the lack of accuracy. In this paper, we propose two

augmentations for VSM. The first augmentation employs

document identifiers of a term that indicate the term’s loca-
tion. The second augmentation deals with a set of closely

related terms in a query, referred to as “family terms.” If

terms consisting of family terms are included in a document

vector over a certain level, it is inferred that all terms of the

family terms are included in a document vector. Our previ-

ous paper [17][18] discussed the degree of improvement by

the proposed augmentations over VSM with the well-known

term frequency–inverse document frequency (tf–idf) term
weighting. In this paper, we show that our two augmenta-

tions for VSM are independent of the term weight schema,

including the simple term frequency weighting and the tf–idf

weighting. The remainder of this paper is organized as fol-

lows. In Section 2, we outline the processes for recovering

traceability. In Section 3, we present SysML models for our

case study. In Section 4, we discuss augmented information

retrieval models, and in Section 5, we present the results of

our experiments. In Section 6, we evaluate the results using

recall and precision. Finally, Section 7 concludes the paper.

2 Overview

2.1 Process for Recovering Traceability

Figure 1 shows the major process flow for recovering

traceability discussed in this paper. Our study deals with

traceability among artifacts in requirements and those in

design phases. The process flow consists of SysML dia-

grams and two tools, i.e., a document analyzer and a tracea-

bility generator. Artifacts are divided into two categories:

requirements artifacts and design artifacts. For illustrative
purposes, Figure 1 contains only the diagrams (requirements,

data models, state machine diagrams, and activity diagrams)

necessary to describe the example in this paper. However,

any SysML/UML diagram can be added as required.

First, design experts create design artifacts that satisfy a set

of requirements. The experts also declare true links among

the requirements and the design artifacts using the SysML

refine relationship (solid lines in Figure 1). Second, infor-

mation retrieval is applied to the requirements and the design

artifacts to generate the recovered links (dashed lines in Fig-

ure 1). Third, the true links and the recovered links are com-

pared to check the extent to which the true links are realized
in the design artifacts. The results of the comparison facili-

tate evaluation of the quality of artifacts in terms of tracea-

bility.

2.2 Document Analyzer

The document analyzer extracts three categories of terms

for use in the traceability generator: key terms, extracted

main terms, and family terms.

(1) Key terms are unique identifiers for recognizing a primi-

tive element in the requirements and design diagrams. In

this paper, the key terms are preceded by a sharp symbol

“#.” We assume that key terms are used in a consistent
manner throughout the software development life cycle

and contribute to an element of a document vector.

 The key term can consist of terms connected by an

underscore “_.” In this case, the term is decomposed into

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

65

RECOVERING TRACE LINKS FOR SYSML MODELS USING VSM-BASED INFORMATION RETRIEVAL

each of its constituents that are treated as extracted main
terms. Thus, a key term generally has twice the weight of

an extracted main term.

(2) The extracted main terms include verbs, nouns, adjec-

tives, and adverbs. Prepositions and conjunctions are ex-

cluded. An extracted main term contributes to an element

of a document vector. Note that the document analyzer

relates each key term and extracted main term to docu-

ments from which the term has been extracted. For ex-

ample, if a term is extracted from the requirements dia-

gram, then the term is tagged with the document identifi-

er “requirement.”

(3) A family term is a set of the extracted main terms in a
sentence consisting of a query. For example, if a sen-

tence consists of the extracted main terms A, B, C, and D,

then a set of the terms forms a family term. If a query

consists of more than one sentence, then more than one

family term can be generated.

Figure 1. Process flow for recovering traceability

2.3 Traceability Generator

Using the terms extracted by the document analyzer, the

traceability generator computes the similarities between a

query and the documents generated from SysML diagrams.

The generator is based on VSM [19] and features three
modes: (1) a simple vector space mode, (2) a mode using the

terms attributed by the document identifier (attributed term

mode), and (3) a mode using the family terms.

 In the attributed term mode, terms are dropped according

to the context of traceability recovery based on the document

identifiers. For example, when a user intends to recover

traceability from requirements to design artifacts, we can

drop those terms that have only the document identifier “re-
quirement” from the query vector.

 Document vectors concerning trace recovery are rewritten

on the basis of the family terms. For example, if the extract-

ed main terms {A, B, C, D} are found in a sentence of the

query, then they are treated as family terms. The family

terms are successively applied to documents. If a document

contains {A, B, C}, then it is inferred that it is possible that

term D is contained in the document. During the initial study,

the possibility of an inferred term is set to 1, meaning that

the term is definitely included. In addition, we assume that a

set of family terms is activated when more than half of the

terms are included in a document vector.

3 Modeling in SysML

3.1 Login Function for a Web System

A login function for a business application is vital for

identifying the user of the application and protecting the

application from unauthorized access. The concept of a login

function is fairly simple. It logs in a user after verifying the

user ID and password by referring to a table in a database
that contains valid pairs of user IDs and passwords. Howev-

er, in practice, a designer must consider support functions,

such as allowing the user to change passwords, managing

expiration of passwords, and setting rules regarding the syn-

tax of the password.

In a typical web application that manages project artifacts,

users consist of two classes: managers and designers. A user

can participate in one or more projects. The user might be a

manager of some projects and a designer of other projects.

The role of the user in a project is stored in a database,

which is described in detail in Subsection 3.3.

The layout of the login screen is shown in Figure 2. The
user who wants to login enters a user ID and a password in

the corresponding fields, and chooses a project name from

the drop-down list.

Figure 2. Layout of the login screen

3.2 Requirements of the Login Function

Solid lines: True links declared by designers
Solid double lines: Textual data exitacted from SysML models
Dashed lines: Links recoverd by information retrieval
Double dashed lines: A set of recoverd links

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

66

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

 As mentioned in the previous subsection, the requirements
of the login function should be specified in the context of the

operation and maintenance of user IDs and passwords. The

requirements of this case study are summarized as follows.

(1) Data items requirement: User ID, password, and project

ID should be entered.

(2) Password management requirement: For security purpos-

es, a password should be robust in its combination of

characters, and the user should periodically change his or

her password. This requirement is further decomposed

into a password setting policy, a password expiration

policy, and a password change policy.

(3) Login failure requirement: In the case of login failure, a
notification must be displayed.

The SysML requirements diagram for these requirements

is shown in Figure 3. Each requirement is attached by the

<<refine>> relationship to the other corresponding SysML

design models, which are described in the following subsec-

tions. Note that <<refine>> relationships are defined manu-

ally as true links by the experts who designed the login func-

tion. All <<refine>> relationships are successfully retrieved

by our augmented retrieval models. This is discussed in fur-

ther detail in Section 5.

3.3 Database Model

 The aim of the database design is to define data items,
relationships, and data constraints for the application. The

entities “user” and “project” are identified. The entity “user”

has the attributes user ID, password, user name, and the date

of the last password update. The entity “project” has the

attributes project ID, project name, and project members and

their roles. The entities “user” and “project” are translated

into the tables R_user and R_project, respectively. A user

can participate in one or more projects; therefore, there is a

one-to-many relationship between the “user” and “project”

entities. The relationship between these entities is specified

by the user ID as a foreign key in the table R_project, as is

shown in Figure 4, which is depicted according to a UML
class profile for data modeling [20]. Note that table names

and data item names are processed as key terms without the

preceding a # symbol.

Figure 3. SysML diagram that specifies the login function requirements

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

67

RECOVERING TRACE LINKS FOR SYSML MODELS USING VSM-BASED INFORMATION RETRIEVAL

3.4 Screen Transition Model

The state machine diagram represents behavior as the

state history of an object in terms of its states and transitions.
Screen transitions can be represented by a SysML state ma-

chine diagram, in which the screens correspond to the states.

By analyzing the requirements of the login function, five
screens are recognized, i.e., #Login_screen, #Log-

in_failure_screen, #Warning_screen, #Password_change_

screen, and #AP_start_screen. Figure 5 shows the overall

screen transitions and depicts the screens, events, and the

<<refine>> relationships that are manually defined as true

links.

3.5 Process Model

The SysML activity diagram is a graph-based diagram

showing flow of control, and is therefore used to define pro-

cesses that are associated with screen transitions. Figure 6

Figure 4. Case study database model

Figure 5. Screen transitions diagram

Figure 6. Process diagram

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

68

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

shows the login process launched when the button on the
login screen is clicked. The main part of the process is de-

scribed in the central lane, while the login and next screens

are described in the left and right lanes, respectively. Note

that the <<refine>> relationships represent true links.

4 Rcovering Requirements Traceabil-

ity

4.1 Defining Documents

The SysML diagrams in Figures 3, 5, and 6 are decom-

posed into documents forming the basic elements of trace

information retrieval. In our case study, we define the docu-

ments as follows:

(1) All leaf nodes of the requirements hierarchy in Figure 3

are decomposed into five documents, i.e., “Req1010,”

“Req1021,” “Req1022,” “Req1023,” and “Req1030.”

(2) All screen nodes of the screen transition diagram in Fig-

ure 5 are decomposed into five documents.
(3) The three lanes in Figure 6, i.e., #Login_screen, #Log-

in_process, and #Next_screen, are decomposed into three

documents.

4.2 Analyzing SysML Diagrams

The document analyzer parses all documents in prepara-

tion for information retrieval based on VSM. The documents

are indexed using the terms extracted from the documents

themselves. The extraction of the terms and the indexing of

the documents are performed according to the following

steps.

(1) All documents are tokenized. Furthermore, all capital

letters are transformed into lower case letters.
(2) The terms preceded by a # symbol are processed as key

terms. In addition, the terms consisting of key terms con-

nected by underscores are divided into each of the terms

that are treated as either stop words or extracted main

terms.

(3) Stop words (i.e., words that are not useful for the purpose

of retrieval, such as articles, pronouns, prepositions, con-

junctions, and numbers) are removed.

(4) The stems of the remaining words are extracted to ensure

that different forms of the same term are treated as one,

i.e., converting plurals into singulars and transforming
conjugated verb forms into infinitives.

(5) Each term has document identifiers that indicate the doc-

uments from which the term has been extracted. The

identifier is further categorized as “requirement” or “de-

sign.” When a term occurs in both requirements docu-

ments and design documents, it can be attributed as {“re-

quirement,” “design”}. The document identifiers are

used to augment information retrieval, which is discussed
in Subsection 4.4. A requirement can contain sub-

requirements, thus forming a requirements hierarchy.

The title of each requirement element contributes to form

a document vector in an accumulated manner along the

requirements hierarchy.

4.3 Vector Space Model

The vector space model (VSM) [19] is an algebraic model

for representing text documents as vectors of identifiers or

terms. Given a set of documents D, a document dj in D is

represented as the vector of term weights:

 (1)

where N is the total number of unique terms in the document

set D, and wi, j is the weight of the i-th term according to a

certain weighting scheme.

A user query is also converted into a vector q that is simi-

lar to the document vector.

 (2)

The similarity between the document dj and the query q

can be computed as the cosine of the angle between the two

vectors dj and q in N-dimensional space as follows:

 , (3)

Several different methods for computing term weights

have been developed. Term frequency, which is the simplest

way to define a term weight, is usually defined on the basis

of the number of term occurrences in a document. Another is

the well-known tf–idf method. The weight wi, j is computed

as follows:

 ・ , (4)

where tfi,j is the i-th term frequency in a document dj and is

usually the number of term occurrences in the document. idfi
is the inverse document frequency of the i-th term in the

document set D. Inverse document frequency is computed as

follows:

 , (5)

where dfi is the number of documents in which the i-th term

occurs and m is the total number of documents. idfi is a

weight for the frequency of the term in a set of documents.

Equation (5) dictates that terms with fewer occurrences in a

set of documents are treated as more informative.

4.4 Augmenting the Vector Space Model

 We augmented VSM based on a similarity computation

using the document identifiers and a set of closely related

terms as follows.
(1) The terms are dropped according to the context of trace-

ability recovery based on the document identifiers. For

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

69

RECOVERING TRACE LINKS FOR SYSML MODELS USING VSM-BASED INFORMATION RETRIEVAL

example, when a user intends to recover traceability from
requirements to design artifacts, we can drop terms in the

query that only have the document identifier “require-

ment” from the query vector. In theory, terms found only

in the requirements do not match those only used in the

designs and vice versa. As described in Section 5, the

“data items requirement” in Figure 3 is used as a query.

In this case, the weights of the terms in the query, includ-

ing “function,” “item,” “individual,” “participate,” “pro-

ject,” and “require” are set to 0 because these terms are

attached by the document identifier “requirement.” In

other words, they are not used in any of the document

vectors generated from Figures 5 and 6. Adjustment of
the query vector increases the similarity values. The ef-

fects of the document identifiers are described in Section

5.

 (2)Closely related terms, i.e., family terms, are treated as a

set. For example, if the extracted main terms {A, B, C,

D} are found in a query, then they are treated as family

terms. The family terms are successively applied to doc-

uments. If a document contains {A, B, C}, then it is in-

ferred that it is possible that the term D is also contained

in the document. During the initial study, the possibility

of an inferred term is set to 1, meaning that the term is
definitely included. In addition, we assume that a set of

family terms is activated when more than half of the

terms are included in a document vector. As described in

Section 5, “data items requirement” in Figure 3 is used as

a query. In this case, a set of terms, including

{“#PassWD,” “#PrjID,” “#UserID,” “data,” “id,” “login,”

“password,” “user”}, is extracted as family terms. The

family terms are successively applied to documents. The

document vectors corresponding to #Login_screens in

Figures 5 and 6 are matched, and the values for “data”

and “password” are updated to 1. Updating the document

vectors and adjustment of the query vector using the
document identifier increase the similarity values. The

effects of the family terms are described in Section 5.

5 Result of the Information Retrieval

5.1 Overview of Experiments

We conducted experiments on documents translated from

the three diagrams shown in Figures 3, 5, and 6. A total of 82

main terms, including 16 key terms attributed by the docu-

ment identifiers, were extracted from the diagrams.

First, we conducted two sets of experiments for tracing

requirements to designs by computing the term weight using

term frequency weighting and tf–idf weighting. The experi-

mental details are described in Subsection 5.2. Next, we

conducted two other sets of experiments for tracing designs

to requirements by computing the term weight using term

frequency weighting and tf–idf weighting. The experimental

details are described in Subsection 5.3. The abbreviations

VS, VA, and VF+VA denote the simple vector space mode,

the mode using the attributed terms, and the mode using both

family terms and attributed terms, respectively.

5.2 Tracing Requirements to Designs

5.2.1 Experiments using Term Frequency Weighting
Each of the five documents translated from the require-

ment process shown in Figure 3 was used as a query vector.

We performed five types of retrievals to trace requirements

to designs by computing the term weight using term fre-

quency weighting in the three modes, i.e., VS, VA, and

VF+VA, resulting in 15 retrievals.

 Figure 7 shows the retrieved documents with the similari-

ty values obtained with term frequency weighting. For ex-

ample, the similarity values corresponding to #Login_screen

(F) in Figure 5 rise from 0.355 to 0.495 using the document

identifiers (VA), and rise from 0.355 to 0.676 using the fami-

ly terms and the document identifiers (VF+VA).

In Figure 7, the circled documents indicate the manually

defined true links. Note that the similarity value of the

VF+VA mode is not less than the values obtained from the

other modes in all the retrievals. In several cases, the differ-

ences between the similarity values of the true links and the

non links increased.

Figure 7. Similarity values of the retrieved documents: tracing

requirements to designs using term frequency weighting

The similarity value of a document reflects how precisely

the document is described using the terms in a query. In this

case study, the similarity value of the warning screen, i.e.,

document H of case 3, is the smallest true link and is less

than half the value of the largest one (G of case 5). This in-

dicates that descriptions concerning the warning screen re-

quire revision. This is a typical example that shows how

F: #Login_screen J: #AP_start_screen
G: #Login_failure_screen K: #Login_screen
H: #Warning_screen L: #Login_process
I: #Password_change_screen M: #Next_screen

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

70

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

requirements tracing contributes to estimating the quality of

documents.

5.2.2 Experiments using tf–idf Weighting
We performed five types of retrievals to trace require-

ments to designs using tf–idf weighting in the three modes.

Figure 8 depicts the retrieved documents with the similarity

values. For example, the similarity values corresponding to

#Login_screen (F) in Figure 5 rise from 0.286 to 0.398 using

the document identifiers (VA), and rise from 0.286 to 0.540

using the family terms and the document identifiers

(VF+VA).

In all cases, the similarity values decrease compared to the

values in Figure 7 because of the tf–idf weighting. However,

the order of the retrieved documents ranked by the similarity

values remains unchanged with the exception documents J

and K in case 5.

Figure 8. Similarity values of the retrieved documents:

tracing requirements using designs in tf–idf weighting

5.3 Tracing Designs to Requirements

5.3.1 Experiments using Term Frequency Weighting

Each of the eight documents translated from the design

diagrams in Figures 5 and 6 was used as query vectors. We

conducted eight types of retrievals to trace designs to re-

quirements using the term frequency weighting in the three

modes, thus resulting in 24 retrievals.

Figure 9 shows the retrieved documents with the similari-

ty values obtained using term frequency weighting. The cir-

cled documents indicate the true links. Document E of case 5

and document E of case 8 denote non links. The former is

apparently a non link because its similarity value is approx-

imately half as large as the value of the average true links.

However, it is difficult to determine whether the latter doc-

ument is actually a non link. “Login failure requirement” in

Figure 3 and #Next_screen in Figure 6 share three extracted

main terms: “login,” “failure,” and “screen.” These terms are

generally used, and they characterize neither the document

nor the query. This non link is primarily due to the way that

the process diagram in Figure 6 and the contents of the doc-

ument description are decomposed.

Figure 9. Similarity values of the retrieved documents: tracing

designs to requirements using term frequency weighting

5.3.2 Experiments using tf–idf Weighting
We also examined the ability to trace designs to require-

ments by computing the term weight using tf–idf weighting.

Figure 10 shows the retrieved documents with the similarity

values. The results are similar to those of Figure 9, with the

exception of documents B and E in case 3 and documents A

and B in case 8, which represent non links.

Figure 10. Similarity values of the retrieved documents:
tracing designs to requirements using tf–idf weighting

6 Evaluation

6.1 Recall and Precision

Fig.7 Similarity values of the retrieved documents:

Tracing requirements to designs in term frequency weighting.

Fig.7 Similarity values of the retrieved documents:

Tracing requirements to designs in term frequency weighting.

F: #Login_screen J: #AP_start_screen
G: #Login_failure_screen K: #Login_screen
H: #Warning_screen L: #Login_process
I: #Password_change_screen M: #Next_screen

A: Data items requirement D: Password change policy
B: Password setting policy E: Login failure requirement
C: Password expiration policy

A: Data items requirement D: Password change policy
B: Password setting policy E: Login failure requirement
C: Password expiration policy

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

71

RECOVERING TRACE LINKS FOR SYSML MODELS USING VSM-BASED INFORMATION RETRIEVAL

The results were evaluated using two widely used metrics:
recall and precision. Recall is the ratio of the number of cor-

rect documents retrieved for a given query to the number of

correct documents for that query. Recall can be expressed as

follows:

 , (6)

where Corrdoc and Retdoc represent the correct documents

and retrieved documents using an information retrieval tech-

nique, respectively. In this study, the number of correct doc-

uments is obtained from the true links that are defined by

design experts using the SysML <<refine>> relationships.

 Precision is the ratio of the number of correct documents

retrieved to the number of documents retrieved. The number

of documents retrieved is obtained from the result of infor-

mation retrieval. Precision can be expressed as follows:

 (7)

6.2 Tracing Requirements to Designs

Figure 11 shows recall and precision for retrieving the de-

sign documents regarding the requirements identified by

computing the term weight using term frequency weighting.

Figure 11 is obtained from Figure 7 by examining the simi-

larity value in increments of 0.025. The vertical axis repre-
sents recall and precision, and the horizontal axis represents

the similarity value. Recall declines sharply when the simi-

larity value is greater than 0.35 in the VS mode. The recall

stays at approximately 90% up to a similarity value of 0.45

in the VA and VF+VA modes. Precision is greater than 60%

for the three modes when the similarity value is greater than

0.20.

 Here, we analyze in detail the 67% line of recall and pre-

cision. In the VS mode, the recall reaches values greater than

67% at a similarity value of 0.188, whereas the precision is

maintained at greater than 67% when the similarity value is

lesser than 0.35. Trace retrieval achieves values greater than
67% for both recall and precision in the similarity value

range of 0.188–0.35. In summary, the following shows the

ranges of similarity values for each of the three VSMs in

which both recall and precision were maintained at greater

than 67%.

VS mode: 0.188–0.350 (0.162 width)

VA mode: 0.238–0.475 (0.237 width)

VF+VA mode: 0.238–0.475 (0.237 width)

Figure 11. Recall and precision for tracing requirements to

designs using term frequency weighting

Figure 12 shows recall and precision for retrieving design

documents regarding the requirements identified by compu-

ting the term weight using tf–idf weighting. Figure 12 is ob-

tained from Figure 8 by examining the similarity value at

increments of 0.025. Recall declines sharply when the simi-

larity value is greater than 0.175 in the VS mode and is

greater than 0.225 in the VA and VF+VA modes. Precision
becomes greater than 60% for all three modes when the sim-

ilarity value is greater than 0.10.

The following shows the ranges of similarity values in the

three modes where both recall and precision are maintained

at greater than 67%.

VS mode: 0.110–0.185 (0.075 width)

VA mode: 0.115–0.240 (0.125 width)

VF+VA mode: 0.120–0.238 (0.118 width)

Figure 12. Recall and precision for tracing requirements to
designs using tf–idf weighting

6.3 Designs to Requirements

Figure 13, obtained from Figure 9, shows the recall and

precision for retrieving the requirements concerning the de-

sign documents using term frequency weighting. Figure 14,

obtained from Figure 10, shows the recall and precision for

retrieving the requirements using tf–idf weighting. Figures

13 and 14 show that recall declines first in the VA mode and

last in the VF+VA mode.

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

72

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

The following shows the ranges of the similarity values in
Figure 13 for each of the three VSMs in which both recall

and precision were maintained at greater than 67%.

VS mode: 0.167–0.350 (0.183 width)

VA mode: 0.234–0.450 (0.216 width)

VF+VA mode: 0. 234–0.575 (0.341 width)

Figure 13. Recall and precision for tracing designs to require-

ments using term frequency weighting

The following shows the ranges of the similarity values in

Figure 14 in the three modes where both recall and precision

are maintained at greater than 67%.

VS mode: 0.060–0. 225 (0.165 width)

VA mode: 0.087–0. 275 (0.188 width)

VF+VA mode: 0.087–0. 355 (0.268 width)

Figure 14. Recall and precision for tracing designs to require-
ments using tf–idf weighting

6.4 Summary of Evaluation

Figure 15 summarizes the range widths of the similarity

values of bidirectional retrieval experiments in all three

modes using the two term weighting methods. The vertical

axis represents the ratio of the range widths of the three

modes to those of the VS mode. Figure 15 shows that the

ranges of the similarity values expanded by the augmenta-

tions in all four sets of experiments, and the range ratios are

independent of the term weighting schema. Note that a wider
range of similarity values indicates that retrieval results are

less affected by the threshold of the similarity values, thus

yielding more stable retrieval results. In this case study, the

results of the similarity value ranges indicate that the

VF+VA mode outperforms the other modes.

Figure 15. Summary of the range ratios of the similarity values

to the VS mode. “tf” denotes term frequency weighting and “tf-
idf” denotes tf–idf weighting.

7 Conclusions and Future Work

 The primary aim of our proposed information retrieval
technique is to introduce context information to enhance the

accuracy of candidate trace link lists. The first enhancement

uses a term with the document identifier indicating the doc-

ument from which the term has been extracted. The other

enhancement utilizes a set of closely related terms called

“family terms” that are extracted from a query.

 We employed SysML as a tool for documenting because it

is a general-purpose modeling language and has been ap-

plied to various projects in system engineering. SysML pro-

vides several requirements relationships. We used the refin-

ing requirements relationship to declare “true links,” which
are set by design experts. The results of our information re-

trieval technique were evaluated against the “true links.”

The results of our experiments show that the proposed ap-

proach outperforms the traditional vector space model ap-

proach in recall and precision and that our enhancements are

independent of the tf–idf term weighting schema.

 In this paper, we used only four types of diagrams, i.e., re-

quirements, data modeling, state machine, and activity dia-

grams. However, our information retrieval technique is in-

dependent of the documentation tool; thus, any SysML/

UML diagram can be added as required.

 In future, we plan to broaden the applicability of the in-
formation retrieval models to trace links between SysML

models and source codes. These are the major artifacts of

system development; therefore, automated tracing between

them will allow software developers to better understand

systems.

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

73

RECOVERING TRACE LINKS FOR SYSML MODELS USING VSM-BASED INFORMATION RETRIEVAL

Acknowledgments

We would like to thank Hisayuki Masui, Yohtaro

Miyanishi, and Tamotsu Noji for their suggestions on soft-

ware system modeling.

References

[1] CMMI Product Team, “CMMI for Development, Ver.

1.3 - Improving processes for developing better prod-

ucts and services,” CMU/SEI-2006-TR-008, Software

Engineering Institute, Carnegie Mellon University,

November 2010. http://www.sei.cmu.edu/.

[2] California Department of Transportation, “Systems En-

gineering Guidebook for ITS, Ver. 3.0,” November

2009. http://www.fhwa.dot.gov/cadiv/segb/.

[3] INCOSE, “Systems Engineering Handbook, Ver. 3 - A

Guide for System Life Cycle Processes and Activities,”
pp. 1-185, June 2006.

[4] ISO/IEC/IEEE, “Std 12207-2008 - Standard for Systems

and Software Engineering - Software Life Cycle Pro-

cesses,” pp. 1-138, January 2008.

[5] Object Management Group, “OMG Systems Modeling

Language, Ver. 1.3,” June 2012. http://www.

omgsysml.org/.

[6] P. Maeder, I. Philippow, and M. Riebisch, “A Traceabil-

ity Link Model for the Unified Process,” The 8th ACIS

International Conference on Software Engineering, Ar-

tificial Intelligence, Networking, and Paral-

lel/Distributed Computing, pp. 700-705, July 2007.
[7] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T.

Yue, “Traceability and SysML Design Slices to Sup-

port Safety Inspections: A Controlled Experiment,”

Journal ACM Transactions on Software Engineering

and Methodology (TOSEM), Vol. 23, No. 1, Article

No. 9, February 2014.

[8] P. Delgoshaei, M. A. Austin, and D. A. Veronica, “A

Semantic Platform Infrastructure for Requirements

Traceability and System Assessment,” The 9th Interna-

tional Conference on Systems (ICONS 2014), pp. 215-

219, February 2014.
[9] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, and S. How-

ard, “Helping Analysts Trace Requirements: An Objec-

tive Look,” The 12th International Requirements Engi-

neering Conference, pp. 249-259, September 2004.

[10] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and

E. Merlo, “Recovering Traceability Links between

Code and Documentation,” IEEE Transactions on

Software Engineering, Vol. 28, No. 10, pp. 970-983,

October 2002.

[11] A. Marcus and J. I. Maletic, “Recovering Documenta-

tion-to-Source-Code Traceability Links Using Latent

Semantic Indexing,” The 25th International Conference
on Software Engineering, pp. 125-135, May 2003.

[12] M. Lormans and A. van Deursen, “Can LSI help Re-

constructing Requirements Traceability in Design and

Test?,” The 10th European Conference on Software

Maintenance and Reengineering, pp. 47-56, March

2006.

[13] A. Zisman, G. Spanoudakis, E. Perez-Minana, and P.

Krause, “Tracing Software Requirements Artifacts,”

The International Conference on Software Engineering

Research and Practice, pp. 448-455, June 2003.

[14] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou,

“Utilizing Supporting Evidence to Improve Dynamic
Requirements Traceability,” The 13th International

Requirements Engineering Conference, pp. 135-144,

August 2005.

[15] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor,

“Software Traceability with Topic Modeling,” The

32nd ACM/IEEE International Conference on Software

Engineering, pp. 95-104, May 2010.

[16] J. Zhou, Y. Lu, and K. Lundqvist, “A Context-based

Information Retrieval Technique for Recovering Use-

Case-to-Source-Code Trace Links in Embedded Soft-

ware Systems,” The 39th Euromicro Conference on
Software Engineering and Advanced Applications, pp.

252-259, September 2013.

[17] Y. Udagawa, “An Augmented Vector Space Infor-

mation Retrieval for Recovering Requirement Tracea-

bility,” The 11th IEEE International Conference on Da-

ta Mining Workshops, pp. 771-778, December 2011.

[18] Y. Udagawa, “Enhancing Information Retrieval to Au-

tomatically Trace Requirement and Design Artifacts,”

The 13th ACM International Conference on Infor-

mation Integration and Web-based Applications & Ser-

vices, pp. 292-295, December 2011.

[19] G. Salton and C. Buckley, “Term-Weighting Approach-
es in Automatic Text Retrieval,” Information Pro-

cessing and Management, Vol. 24, No. 5, pp. 513-523,

1988.

[20] W. A. Scott, “A UML Profile for Data Modeling,” 2009.

http://www.agiledata.org/essays/umlDataModelingProf

ile.html.

Biographies

The author received a Ph.D. in aeronautical science from

the University of Tokyo in 1982. From 1982 to 2010, he

worked on various project related to database and Web-

based system development for industrial use. Since April

2010, he has served as a professor in the computer science

department at Tokyo Polytechnic University. His research

interests include data mining, case-based reasoning, and

International Journal of Advanced Computer Technology (IJACT)

ISSN:2319-7900

74

INTERNATIONAL JOURNAL OF ADVANCE COMPUTER TECHNOLOGY | VOLUME 3, NUMBER 2,

quality management of systems development. Prof.
Udagawa may be reached at udagawa@cs.t-kougei.ac.jp

