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Abstract  
 
The spatio-temporal prediction problem requires that one or 

more future values be predicted for input data obtained from 

sensors at multiple physical locations. Examples of this type 

of problem include weather prediction, flood prediction, 

network traffic flow, and so forth. In this paper we provide 
an overview of this problem, highlighting the principles and 

issues that come to play in spatio-temporal prediction prob-

lems. We describe some recent work in the area of flood 

prediction to illustrate the use of sophisticated data mining 

techniques that have been examined as possible solutions. 

Spatial-temporal prediction use of soft computing techniques 

in predicting floods (water level at a target location in a riv-

er). The techniques and the results find during performance 

evaluations.  

 

Introduction 
 

   Forecasting future values for systems that contain 

both spatial and temporal features (spatial-temporal) is ex-

tremely complex. As an example, consider the problem of 

predicting precipitation at one location. The amount of pre-

vious rainfall in areas close to the target certainly affects this 

forecast. However, there are many other factors (tempera-

ture, time of day, wind direction, wind speed, and so forth) 

that impact the rainfall prediction. The area of spatial-
temporal prediction has been the focus of much research in 

recent years (Jothityangkoon, Sivapalan, & Viney, 2000; 

Kelly, Clapp, & Rodriguez, 1998; Pokrajac, & Obradovic, 

2001; Roddick, Hornsby, & Spiliopoulou, 2000; Singh, 

Chaplain, & McLachlan, 1999; Deutsch, & Ramos, 1986; 

Dougherty, Corne, & Openshaw, 1997;). Due to the exces-

sive complexity of predicting these future values, common 

practice is to utilize domain experts with extensive experi-

ence in both forecasting and the problem domain itself. For 

example, for flood prediction, the National Oceanic and 

Atmospheric Administration (NOAA) actually employs spe-

cialists whose job is to understand the history and specifics 
of predicting floods on one river. A different domain expert 

may be hired for a different river. Due to the widespread use 

of domain experts, spatial-temporal prediction is extremely 

expensive, and due to the complexity of the nature of the 

problems, prediction accuracy is often low. Analysis of 
spatio-temporal systems is complex, since it consists of 

a large amount of irregular outcomes that incorporate 

space and time factors.  
 

Flood Prediction 
 

  Flood prediction (forecasting) is an example of a spatio-

temporal prediction problem whose solution can be ad-

dressed because the problem is automatically simplified due 

to the nature of the problem itself; that is, predicting a flood 

(or alternatively, a water level or flow value) at a particular 

point in a river has a well defined spatial aspect, namely, the 

flow of the river and the lay of the land. Figure1 illustrates 
this aspect. This figure shows the Serwent Catchmentas pro-

vided by the British National River Flow Archive. We don’t 

need to worry about sensor data obtained for spots outside 

the catchment. In addition, we know the general direction in 

which water will flow within a catchment. While flood pre-

diction simplifies the spatial influence issue, it does not 

eliminate it completely. Looking at Figure 1, we see that 

sensor readings at location 28043 definitely impact those at 

28010, but we do not know what the exact influence is. Cer-

tainly it would be safe to assume that the impact is some-

what less than the readings at location 28055. But how 

much? Another issue here is the temporal lag between the 
readings. The time lag between the influence of a water level 

reading at 28043 is probably greater than that at 28055, but 

the actual values vary. There are many common spatio-

temporal prediction problems similar to flood prediction. 

Traffic engineers examine the flow of traffic on highways to 

predict traffic delays and determine where best to spend 

funds to upgrade roadways. Network traffic engineers simi-

larly examine flow of packets between sites to predict rout-

ing delays and revent network downtime. Similar spatio-

temporal prediction problems include electric flow in elec-

tric rids and water usage in public water systems. Other 
spatio-temporal problems may not exactly fit into the flood 

prediction paradigm, but may be simplified   
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Figure 1. Derwent catchment of Upper Derwent River 

 

by adding spatial influence assumptions to help develop so-
lutions to the more general problem. When looking at pre-

dicting ocean water temperature, the movement of  water 

may be approximated based on knowledge by experts as to 

the normal  movements of ocean water. by adding spatial 

influence assumptions to help develop solutions to the more 

general problem. When looking at predicting ocean water 

temperature, the movement of  water may be approximated 

based on knowledge by experts as to the normal  movements 

of ocean water. 

 

 Spatio-Temporal Prediction Problem 
 

  In this section we briefly review some previous research in 

the area of spatiotemporal prediction. We classify the work 

into counting models, stochastic models, Markov models.  

 

A.Counting Models 
 

  We view counting models to be algebraic formulations 

used to capture complex issues such as spatial influence, 

temporal lag, high dimensionality and hidden relationships. 

This is a common approach with current weather prediction 
and flood prediction systems. possible. Environment studies 

like flood prediction (Burnash, 1996; Comet, 2000), distri-

bution of ice channels and distribution of hydrological pa-

rameters in oceans (AARI, 2004) can be approximated, and 

a prediction can be made by creating a deterministic mathe-

matical counting model. A scientist, based on computation 

fluid dynamics equations, can design a model that simplifies 

the relationship among hydrological parameters. The most 

common approaches to solving the flood prediction problem 

are based on the use of counting mathematical models. One 

model is created for each flood prediction site, and it at-
tempts to capture all of the unique features of the catchment 

at that site. These include such things as river structure up-

stream, flow rate and soil absorption. To use Values collect-

ed by sensory input include such things as water level up-

stream, temperature, humidity, time of day and rainfall at 

various points in the catchment. The National Weather Ser-

vice, part of NOAA, uses an approach based on the Sacra-

mento Soil Moisture Accounting Model(NOAA, 2004). This 

technique predicts water levels by measuring rainfall in the 

catchment and estimating runoff and soil absorption. the 

model, at least 20 different parameter values have to be es-

timated by the domain expert (Comet, 2000). Over time, the 

model is adjusted by modifying these parameter estimates. 

 

B.Stochastic Models  
 

Stochastic models have also been used to address the spatio-
temporal prediction problem. While studying how to manage 

livestock’s waste in a watershed, Cressi and Majure (1997) 

tried to design a spatio-temporal prediction model mainly 

based upon spatial statistics analysis. The whole area was 

divided into smaller grid surfaces, and their spatial charac-

teristics were summed. To capture the temporal characteris-

tics, they used a “three-day area of influence.” In other 

words, data collected at an upper stream more than three 

days ago would not be considered to affect the lower 

stream’s data. This model did generate a good prediction, 

unfortunately at the price of a “large variation of the predict-

ed values” with a little modification of the input data. Alt-
hough this overfitting problem in 

their work was attributed to the low sampling density in 

space and time, it is rational to suspect that spatial statistics, 

with the use of a straightforward timewindow assumption, is 

not sophisticated enough for a reliable spatio-temporal 

prediction. In order to perform prediction for a dynamic 

spatio-temporal system, a model needs to be constructed to 

incorporate both time and space variability. AutoRegressive 

Integrated Moving Average (ARIMA) time series modeling is 

one of the popular modeling techniques taking temporal as-

pects into account. Space variation is usually added statisti-
cally to it to reflect the dependence of the system outcome 

on relative direction as well as distance between locations 

(Box, & Jenkins, 1970). ARIMA is a powerful model for 

both stationary and nonstationary time series. The auto-

regressive portion represents the deviation of the current 

value of a stochastic process from its mean at time t with a 

linear aggregate of p previous values of the process and a 

random a drawing from a fixed distribution, which is as-

sumed to be Normal and having mean zero, so called “white 

noise.” Moving average models express the deviation linear-

ly on q number of previous random a drawing (Box et al., 

1970). Both models describe the stationary process; 
nonstationary summation is added to model the difference of 

the process from stationary (Box et al., 1970, 1994; Wei, 

1989). In the spatio-temporal problem, the space lag also 

needs to be ncorporated into the model. Space-Time Auto-

Regressive Integrated Moving Average (STARIMA) is one 

popular model of this type. It uses a spatial hierarchical or-

dering of the neighbors of each site and a sequence of NXN 

weighting matrices for N locations to model the influence 
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that the different locations have on a given site (Pfeifer, & 

Deutsch, 

1980a). STARIMA has been widely used on various spatio-

temporal problem domains, such as hydrologic modeling 

(Deutsch et al.,1986) and crime analysis (Pfeifer et al., 

1980b). 

 

C.Markov Models and Variants 
 
A stochastic process is a Markov process when it satisfies 

the Markov property. Isaacson (1976) states that “a stochas-

tic process {Xk}, K = 1,2,… with state space S = {1, 2, 3…} 

is said to satisfy the Markov property if for every n and all 

states i1, i2, … in it is true that P[Xn = in| Xn-1 = in-1, Xn-2 

= in-2, …, X1 = i1] = P[Xn = in| Xn-1 = in-1],” where P is 

the transition probability. Simply speaking, the Markov 

property declares that the transition probability from current 

state in-1 to next state in depends only on the current state of 

the process and has nothing to do with the earlier states in 

the history of the process. A Markov process is called Mar-

kov chain if the state space is countable or finite. A Markov 
chain model, which we will call Markov model (MM) in the 

rest of this chapter, is constructed with states and transitions 

that can be visualized as a weighted directgraph with collec-

tion of m vertices, S, and directed edges, E: 

S = {Nk | K = 1,2, … m}, and E = { <Ni,Nj> | i є 1,2, …, m, j 

є 1, 2, …, m} 

With a vertex and an edge in the graph corresponding to a 

state and a state transition in MM respectively, the weight on 

each edge of graph is then the transition probability aij = 

P(Nj | Ni) of an MM. If we consider MM as a complete 

graph, the transition probability distribution can be repre-
sented by an m × m matrix, so called transition matrix. In 

real life, there are no systems completely satisfying the Mar-

kov property, so this restriction is often loosely defined and 

assumed.  Once an MM is chosen to be the model for a sys-

tem, it is constructed by defining the appropriate state repre-

sentations and transition probabilities. The state representa-

tion of an MM is usually chosen by domain experts to well 

represent the property of the system modeled. It is expected 

that the number of states in an MM is enough to simulate the 

different states of the system but not so many that there is no 

significant difference between MM states. To develop a 

model to simulate the daily rainfall amount based on histori-
cal observation, Haan, Allen and Street (1976) used rainfall 

amount as state representation and grouped observed rainfall 

amount into six classes (states), which was found to be a 

reasonable choice of clustering to model the given data after 

experimenting on several class boundary settings. A statisti-

cal method was adopted by Yapo et al.(1993) to cluster ob-

served streamflows when constructing a flood prediction 

model, in which the K-mean clustering algorithm was used 

to “minimize the total sum of the square distances. from a 

streamflow value to cluster center” in order  to find the op-

timal number of intervals and enough streamflow data in 

each interval. Once the states in the model are decided, the 

state transition probabilities are usually decided by the ratio 

of nij/ni, where nij is the number of times that state transits 

from state i to state j, and ni is the number of times the sys-
tem is in i. 

 

Data Mining Techniques Used for 

Flood Prediction 
 

There are other data mining techniques in predicting floods 
(or to be more precise, water level at a target location in a 

river). They are: HMM, EMM.We briefly introduce these 

techniques and the results found during performance evalua-

tions of them. 

 

A.Hidden Markov Models 
 

There have been several approaches to using HMMs in flood 

prediction. One approach uses multiple HMMs, each repre-

senting a discrete state of the prediction site. For example, 

one HMM could represent the occurrence of a flood, and 

another could represent an average river condition. In each 

model, the upstream measurements are treated as observa-
tions, and the time (relative to a starting time) as states. 

Then, during prediction, experts choose the model that best 

matches or recognizes the given observations using the for-

ward-backward procedure (Rabiner et al., 1986). We call 

this a Recognition-Based Model. The second approach draws 

an analogy between the components of an HMM – an ob-

servable sequence of symbols and a related but hidden state 

sequence – and the components of the flood prediction prob-

lem – an observable sequence of upstream river conditions 

and a hidden (unknown) sequence of future river conditions 

at the target site. Given an observation of the present condi-

tion of the upstream sites, the flood prediction problem is to 
uncover the best corresponding state sequence that repre-

sents the river conditions at the prediction site. Here it helps 

to think of the states as related to rather than causing the 

occurrence of the observation symbols. The accuracy of this 

model might reveal a few things about the nature of this rela-

tionship. We call this a Viterbi-Based Model. Our initial 

experiments examining these two approaches using the wa-

ter levels as measurements did not yield very positive re-

sults. In particular, the Viterbi- Based Model had many 

states, including some that were used too infrequently during 

training. Results improved when we considered the change 
in water level relative to the first measurement in a fixed 
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time window because this reduced the variability of the 

measurements. But the HMMs still did not perform well 

compared to some existing NN techniques. Thus, we do not 

consider the use of HMMs further in this chapter.  

 

B.Extensible Markov Models 
 
We also examined the use of the EMM in flood prediction. 

In our experiments, the EMMSim algorithm was implement-

ed using four different similarity measures (Dice, Jaccard, 

Cosine and Overlap). The threshold of similarity measure-

ment determines whether a new node need to be added to the 

model; that is, if the similarity between an input reading and 

each of the states in current EMM is below the threshold, a 

new node is created representing a new state that is signifi-

cantly different from current existing states. Our model was 

built and tested for flood prediction using data of river sen-

sor readings (Dunham et al.,2004) obtained from 
www.ccg.leeds.ac.uk/simon/nndown.html, which provides 

real information of water levels at a catchment (Ouse 

Catchment) in the United Kingdom. The accuracy of the 

EMM prediction, which in this case is the water level at a 

designated location one hour ahead of time, was measured 

using Root Means Square (RMS) and Normalized 

Absolute Ratio Error (NARE) as described below: 

 

 
Here O(t) is the observed value and P(t) is the predicted val-

ue at time t; N is the total number of test data and t is the 

time variable. EMM prediction performance was compared 

with a Neural Network based prediction system, River Level 

Forecasting (RLF) that is an “Artificial Neural Networks for 
Flood Forecasting” available on the same Web site 

(Openshaw et al., 1998). Experiments showed that the num-

ber of states in the EMM grows at a sub linear rate and lev-

els off once the model has learned the current river behavior. 

If the river behavior changes, the model will begin learning 

again (Dunham, 2004). When comparing the performance of 

EMM to RLF on prediction accuracy, Table 1 shows the 

EMM performance is better. There are several issues about 

EMM that deserve further investigation. First, even though 

the number of states tends to converge when more data are 

provided, it did not stop growing. To solve this problem, 
presumably a preset maximum number of states could be 

used to restrict the growth of number of EMM states, while 

the learning of links and transition probabilities are still car-

ried on. Second, the water level data that was used to build 

and test EMM is pretty stable. More modifications of the 

EMM algorithm might be required when it is applied to data 

that varies strongly. Possible solutions would be i) choosing 

more sophisticated similarity algorithms; ii) including other 

environmental factors beyond water level to better represent 

the status of the system, iii) making multiple models to 

match different segments of the varied data, as proposed by 

Haan in 1976, where different MM models were built for 

each month. Third, algorithms of states merging and split-
ting could be included in EMM to closely model the dynam-

ic problem domain. 

 

Conclusions 
 

The spatio-temporal prediction problem is extremely diffi-

cult. Conventional solutions using counting models are too 

labor intensive. By simplifying some of the issues, such as 

spatial influence specialized subproblems may be examined. 
We have evaluated data mining techniques to attack the 

flood prediction problem. Using two new error measurement 

metrics, we have shown that HMMs do not appear to be bet-

ter than NNs. However, more sophisticated data mining 

modeling techniques (EMM, STIFF, NN-ACC) can yield 

better results than previously proposed methods. While the 

Figure 2. Comparison of NN-ACC, EMM and RLF Models, 

one-hour prediction 

 

flood prediction problem is a subproblem of the more gen-

eral spatio-temporal prediction problem, there are many real-

world applications of this type. Although we cannot general-
ize our results to any type of spatio-temporal prediction 

problem, we feel that they are promising enough that more 

research is warranted. Currently in the real world, it appears 

that techniques to address spatio-temporal prediction seem to 

center around the more simplistic, more understood counting 

techniques. There does not appear to be any acceptance in 

the real world to more sophisticated, less understood data 
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mining technqiues. However, we feel that in the future this 

really should change. Due to the very nature of the problem, 

and its applicability to many real-world applications, future 

study to examine better data mining solutions is needed. The 

potential benefits are quite high. 

 
Model  NARE  RMS  

EMM  0.065 0.413 

RLF  0.447 2.374 

NN-ACC  0.0239 0.145 

Table 1. Comparison NN-ACC with EMM and RLF flood pre-

diction models 

 
We propose that future research is needed in the following 

areas: 

• Creation of more sophisticated data mining techniques to 

model the complex spatio-temporal problems, or at least 

subproblems thereof. 

• Evaluation of other data mining forecasting techniques to 

the spatiotemporal problem. 

• Evaluation of combining data mining tools to attack the 

spatio-temporal prediction problem. 
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