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Abstract  
 

In this paper, the applicability of a matrix or magic 

squares/weak magic squares of any order in evaluating num-

erals for encryption and decryption is considered. Involve-

ment of 2, 13 (factors of 26) has been the major drawback 

for the application of Hill and magic square/ weak magic 

square ciphers in crypto-graphical studies particularly the 

decryption process..The efficiency of a cryptographic algo-

rithm is based on the time taken for encryption/decryption 

and the way it produces different cipher-text from a clear-
text. It is observed that weak magic squares (for singly even, 

n) can produce different ciphertext as far as possible from 

plaintext than that of the actual magic squares. A new ap-

proach is developed so as to enable the encryp-

tion/decryption of any matrix or the magic squares by intro-

ducing dummy letters in addition to the existing 26 letters 

(English).. Introduction of selected dummy letters not only 

facilitate encryption/decryption process but also provide 

advantage of eliminating duplication of letters (vowels) in a 

message. The Encryption/decryption process has been made 

suitable and can provide another layer of security in any 

public key cryptosystem using magic square or weak magic 
square implementation.   

 

1. Introduction 
 

 The efficiency of a cryptographic algorithm is based on 

the time taken for encryption, decryption and the way it pro-

duces different cipher-text from a clear-text. Ganapathy and 

Mani (2009) suggested an alternative approach to handling 
ASCII characters in the cryptosystem, a magic square im-

plementation (computer oriented) to enhance the efficiency 

by providing add-on security to the cryptosystem. The en-

cryption/decryption is based on numerals generated by mag-

ic square rather than ASCII values and expected to provide 

another layer of security to any public key algorithms such 

as RSA, EL Gamal etc. Hill ciphers experienced disadvan-

tages in decryption because of the involvement of 2 and 13 

(factors of 26). Normal magic squares/weak magic squares 

of any order, n (odd, doubly-even and singly-even) involves 

2, 13 and therefore faced difficulties in decryption process as 

experienced in Hill ciphers.  

 
 We consider the normal magic squares and weak magic 

squares constructed by expressing in basic Latin square for-

mat for any n (odd, even). In the construction of magic 

squares for any singly even n, depending upon the choice of 

the central block and assignment of pair-numbers satisfying 

T, different weak magic squares are generated. These weak 

magic squares can produce more ciphertext than that of the 

actual magic squares.  

 

1.1. Hill ciphers 

 
In classical cryptography, the Hill cipher is a poly-

graphic substitution cipher based on linear algebra, devel-

oped by Lester S Hill in 1929, each letter is assigned a digit 

in base 26: A= 0, B =1 and so on. A block of n letters is then 

considered as a vector of n dimensions and multiplied by a 

n*n matrix, modulo 26. The components of the matrix are 

the key, and should be random provided that the matrix is 

invertible to ensure decryption process. If the determinant of 

the matrix is zero or has common factors with the modulus 

(factors of 2, 13 in case of modulus 26), then the matrix can-

not be used in the Hill cipher.  
 The strength of the Hill cipher is that it completely hides 

single letter frequencies. So it is strong against a ciphertext 

attack. Security could be greatly enhanced by combining 

with some non-linear step to defeat this attack. A Hill cipher 

of dimension 6 was once implemented mechanically, unfor-

tunately the gearing arrangements were fixed for any given 

machine, so triple encryption was recommended for securi-

ty: a secret nonlinear step, followed by the wide diffusive 

step from the machine, followed by a third secret non-linear 

step.. 

Hill observed that plaintext messages can be encrypted 

successfully by taking a key matrix of size n*n. Again, the 
encrypted ciphertext back into a vector multiplying by the 

inverse of the matrix. The technique fails to give the plain-

text properly due to the involvement of  2 and 13 (factor of 

26) in the matrix. An attempt is made in this paper to make 

the Hill & weak magic square ciphers work efficiently in 
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encryption and decryption process and to enhance the appli-

cability of magic squares, weak magic squares in public key 

cryptosystem to ensure add-on security to the cryptosystem.  

 

1.2. Magic squares 
 

Tomba (2012) introduced simple techniques for constructing 

normal magic squares using basic Latin Squares for any n 

(odd, doubly-even and singly-even). The method needs 3 
steps for construction of odd order magic squares, 5 steps for 

construction of doubly-even magic squares and 6 steps for 

construction of singly-even magic squares. The construction 

process is described separately for odd, doubly-even and 

singly-even as follows: 

 

Case-1: For any odd n 
 

Step-1:  Represent the consecutive numbers 1 to n2 in n 

rows and n columns.  

Find P =
2

)1( 2n
 and magic sum, S = 2

)1( 2nn
  

Step-2:  Arrange the n*n matrix in basic Latin square format 

to give the column sums equal. 

Step-3: Select the row associated with P, assign this row as 

main diagonal elements (keeping the pivot element 

in the middle cell) in ascending or descending order 

and arrange other (column) elements in an orderly 

manner to give the desired magic square. 

 

Case-I1: For any doubly-even n 
 

 Step-1: First the consecutive numbers (1 to n2) in n rows 

and n columns be arranged in basic Latin square 

format. The pivot element lies between two num-

bers, 
2

2

( n ) and  1
2

2

n  and find T=  12 n  

Step-2:  Select the column associated with these two num-

bers, assign this column as main diagonal elements 
and arrange other (row) elements in an orderly 

manner to give diagonals sums equal  

Step-3:  Make symmetric transformations of other elements 

(retaining the diagonal elements unchanged)  to 

construct the extreme corner blocks and central 

blocks of (2 x 2) each. 

Step-4:  Reverting  4
2
1 n  rows and columns in a syste-

matic manner, a magic parametric constant (T) and 

a set of sub-magic parametric constants are generat-

ed.  

Step-5:  Main adjustments should be made on the pair-

numbers satisfying T, whereas minor adjustments 

should be made on other elements of sub-magic pa-
rametric constants (if necessary) to get the desired 

magic square for any doubly-even n. 

 
 

Case-III: For any singly-even n 
 

Step-1: First arrange the consecutive numbers 1 to n2 in 

basic Latin square format. Since the pivot element 

lies between two numbers,
2

2

( n ) and
2

2

( n +1), hence 

find T =  12 n  

Step-2:  Select the column associated with these two num-

bers, assign it as main diagonal elements and ar-

range other (row) elements in an orderly manner to 

make diagonal sums equal  

Step-3:  Make symmetric transformations of other elements 

(retaining the diagonal elements unchanged) to 

generate extreme corner blocks and central block of 

(2 x 2) each. 

Step-4:  Reverting  4
2
1 n  rows and columns in a syste-

matic manner, a magic parametric constant, T and a 

set of sub-magic parametric constants are generat-

ed.  
Step-5:  Revert one of the main diagonal elements (retaining 

central block un-changed). Select a suitable central 

block and assign the pair-numbers satisfying T in 

selective positions. (Assigning the pair-numbers in 

alternate positions with rotation 900 can provide 

better results). 

Step-6: Main adjustments should be made on the pair-

numbers satisfying T, whereas minor adjustments 

should be made on other elements to get the magic 

square for any singly-even n.

 The technique generates weak magic squares for any singly-

even n, if proper selection of central block and assignment of 

pair numbers in selective positions are not followed.  
 

2. Methodology 
 

 Magic squares (normal) of order n comprise of consecu-

tive numbers 1 to n2 involving the numbers 2 and 13 (factors 

of 26) and therefore not suitable for encryption and decryp-

tion using modulo 26 as experienced by Hill (1929).  

English alphabets consist of 26 letters (5 vowels and 21 con-

sonants). The frequency count of the letters are as follows It 

is observed that the frequency of the vowel letter E is the 
highest, followed by A, O I. and U. 
 

 
Figure showing frequency count of the English letters  

 



International Journal of Advanced Computer Technology (IJACT)        
ISSN:2319-7900 

 

85 

SUCCESSFUL IMPLEMENTATION OF THE HILL AND MAGIC SQUARE CIPHERS: A NEW DIRECTION 
 

The practice of the cryptanalysis group is to study minutely 

the frequency of the words available in a message and to 

simulate the possible ones from it. If we consider joint-

letters with these vowel letters, the possibilities are: 

 

AA, AE, AI, AO, AU    : Commonly used : AU 

EA, EE, EI, EO, EU      : Commonly used : EA, EE, EI 

IA, IE, II, IO, IU           : Commonly used : IE  
OA, OE, OI, OO, OU    : Commonly used : OO, OU  

UA, UE, UI, UO, UU    : Commonly used : -UA 

 

2.1. Dummy letters 

If we select 5 commonly used joint-letters as AU, EA, 

EE, OO, OU as dummy letters, expressed as Au, Ea, Ee, Oo, 

Ou then, the letters will compose of 31 (a prime number) in 

lieu of the existing 26 letters. We propose the introduction of 

5 dummy alphabets to make it 31 and the plaintext and ci-

phertext of these letters are considered as follows: 
 
 

Table-1: Plaintext and ciphertext (31 letter/dummy letters) 

 

 

 

 
 

 

 

 

 

 

 

 

The applicability of Hill & magic square ciphers can be dis-

cussed in two ways  

 (i) Encryption/decryption with a matrix or/weak magic 

square  

 

Encryption Process:  
 

As stated earlier, weak magic squares (for singly-even, n) 

can produce different ciphertext as far as possible from 

plaintext than that of the actual magic squares. Let the mes-

sage to be encrypted be M comprising a block of m letters. 

Encryption is considered as a vector of m dimensions and 

multiplied by a m*m matrix or weak magic square, mod 31. 

If the matrix or weak magic square, A is invertible i.e.│A│ 

≠ 0, decryption is ensured.   

Now, ciphertext = {(m *m) matrix/ weak magic square} * 
plaintext mod 31.  

 

Decryption Process: 
 [ 
Decryption is done by calculating M = {(m*m) matrix/ weak 

magic square}-1 Ciphertext mod 31 giving the original plain-

text of the message. 

(ii) Application of a matrix or weak magic square as add-

on security in public key cryptosystem  
 

To show the relevance of this work to the security of 

public-key encryption scheme, a public-key cryptosystem, 

RSA is taken. The private key of a user consists of two 
prime p and q and an exponent (decryption key) d.  

The public-key consists of the modulus n = p*q, and an ex-

ponent e such that d = e-1 mod (p-1) (q-1). To encrypt a 

plaintext, M the user computes C = Me mod n and decryp-

tion  

is done by calculating M = Cd mod n.  

 

Encryption Process:  
 

The encrypted ciphertext using the m*m matrix or weak 

magic square (i) is done by using 

Ciphertext(i) 
 = {(m*m) matrix/ weak magic square}* M mod 

31: denoted as CT(i). 

The encrypted ciphertext, CT
(i)

  is then applied to RSA 

algorithm given above C(1) = {CT(i)}e  mod n. In fact, C(i) 
represents the doubly encrypted ciphertext (first using a 

weak magic square and secondly using RSA algorithm) of a 

message. 

 

Decryption Process:  
 

To decrypt M(1) = C(1) d mod n.  

The decrypted ciphertext using RSA algorithm gives CT(i) = 

{C(i)}d  mod n. 

Once again, the doubly decrypted plaintext is calculated 

using Ciphertext(i) = {(m *m) matrix/ weak magic square}-1 

CT(i) mod 31 

With the application of a matrix or weak magic square in 

public key cryptosystem, another layer of security can be 
provided. Again, the introduction of dummy letters, the se-

curity of the cryptosystem will be tightening more.  

 

2.1. Advantages of introducing dummy letters 

 

(i) There exist 5 vowel letters and therefore introduction 

of 5 dummy letters (joint-letters) with vowels is more 

convenient 

(ii) It will help in eliminating duplication in writing vowels 

in a message like GOOD, MEET, AUTHORITY, DIS-

EASE, COLOUR etc.. 
(iii) The use of dummy letters will not affect the existing 

letters and therefore will maintain supremacy to the ex-

isting system 

(iv) The encryption and decryption process will be made 

easy and drawback on decryption process will be re-

duced since 31 is a prime number. 

(v) Expected to provide more security in encryption, de-

cryption and the cryptosystem. 

 

 

 

PT A B C D E F G H I J K 

CT 0 1 2 3 4 5 6 7 8 9 10 

PT L M N O P Q R S T U V 

CT 11 12 13 14 15 16 17 18 19 20 21 

PT W X Y Z Au Ea Ee Oo Ou   

CT 22 23 24 25 26 27 28 29 30   
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More discussions on introducing dummy letters  
 

(a) There may exists certain languages having 29, 31 and 

37 letters where the proposed system can work effi-
ciently but the general question is “what will be its out-

come in international scenario”? 

(b) The system may work but what to be interpreted if the 

decrypted message falls on these dummy variables.  

(c) The decryption process in Hill & weak magic square 

ciphers generally face difficulties to give the plaintext 

properly due to the involvement of 2 and 13 (factor of 

26) in the matrix. 

(d) Shifting the values (elements) of a matrix or weak 

magic square beyond 13 (n > 13), to avoid 2 and 13 is 

not suggested though it gives more reliable results. 
 

We may consider a m*m weak magic squares as key and a 

message with m words (letters/dummy-letters), then the 

message can provide different ciphertext from plaintext as 

far as possible depending upon the choice of the central 

block and assignment of pair-numbers satisfying T in selec-

tive positions..  

 

 

3. Examples   
 Construction of magic squares 

 Examples for constructing magic squares using basic Latin 

Squares are shown separately for odd order, even order 

(doubly even and singly even cases) magic squares. 

 

Case I: For any odd n 
 

Example 1:  (3 * 3) Magic Square    

S-1: Write matrix (Fig-1). Here, P = 
2

)1( 2 n
= 5,  

  S = 2

)1( 2nn
= 15  for n=3 

S-2:  Arranging in basic Latin Square format [fig-2] gives 

column totals equal 

S-3: Selecting the pivot row, assigning as main diagonal 

elements and rearranging column elements in an or-

derly manner gives the magic square (fig-3);  

 
 

 

 

 

Fig-1                    Fig-2                         Fig-3 

 

Example-2:  (5 * 5) Magic Square  

S-1:  Write [Fig-1] Here, P = 
2

)1( 2 n
= 13   

   S = 
2

)1( 2nn
= 65 for n = 5 

S-2: Arranging in basic Latin Square format gives column 
sums equal [fig-2] 

S-3: Selecting the pivot row, assigning as diagonal ele-

ments and rearranging column elements in an orderly 

manner gives (fig-3), 

  

 

 

 

 
 

 

 
 

  Fig-2                                     Fig-3  
 

Example-3: (7*7) Magic Square   

A (7 * 7) magic square constructed by applying Latin Square 
principle is given as:  

 

 

 

 

 

 

 Fig-2                                  

 

 

 
Here. P = 25 and S = 175 

 

Case II: For any doubly-even n 
Example 4:  (4 * 4) Magic Square   

S-1:  Arranging in basic Latin Square format gives with col-

umn totals equal 

Here, S =  )1( 2

2
1 nn = 34 for n = 4 and P lies be-

tween 8 and 9. Find T = 17 

S-2: Selecting the pivot column, assigning as main diagonal 

elements and rearranging gives  

 

 

 
 

 

 
 

 

S-3: Making transformations gives ,  

Extreme corner blocks: 









121

615

,









138

310









714

94









211

615  

 

 

 

 

 
 

 

 

1 2 3 

4 5 6 

7 8 9 

1 2 3 

5 6 4 

9 7 8 

8 1 6 

3 5 7 

4 9 2 

15 6 10 3 

1 12 8 13 

4 9 5 16 

14 7 11 2 

17 24 1 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

11 18 25 2 9 

 

1 2 3 4 5 

7 8 9 10 6 

13 14 15 11 12 

19 20 16 17 18 

25 21 22 23 24 

 

30 39 48 1 10 19 28 

38 47 7 9 18 27 29 

 6 6 8 17 26 35 37 

5 14 16 25 34 36 45 

13 15 24 33 42 44 4 

21 23 32 41  43 3 12 

22 31 40 49 2 11 20 

 

1 2 3 4 

6 7 8 5 

11 12 9 10 

16 13 14 15 

 

15 11 7 3 

16 12 8 4 

13 9 5 1 

14 10 6 2 

 

15 6 10 3 

1 12 8 13 

4 9 5 16 

14 7 11 2 
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S-4:  Here,  )4(
2

1 n = 0 for n = 4 and therefore no 

magic parametric constant is available.  

S-5:  No minor adjustment needed and therefore the 

construction is completed in Step-3.

                     

 
 
 

Example 5:  (8 * 8) Magic Square  

 

 

 

Step-2:                                                               
 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

Step-3 

 

 

 

 

 
 

 

 

 

Step-4 & 5 

 
 

 
 

 

 

 

Case-III: For any singly-even n 
Example 6:  (6 * 6) magic square  

 

 

 

Step-1                                         

Step-2: 

                                                    

 

 
 

 

 

 

 

 

Step-3: 

 

 

 

 
 

 

 

Step-4 

 

 

 

 

 

 

 

 
 

Step-5:  

 

 

 

 

 

 

 

 

 Step-6: 
 

 

 
 
 

Note: In the construction of singly-even magic squares using 
basic Latin squares, selecting a suitable central block, as-

signing the pair-numbers satisfying T in selective positions 

is normally complicated. Shifting the pair-numbers satisfy-

ing T in positions with 900 rotation will provide best results. 

 (i)   In many cases, it will generate weak magic squares 

 (ii) Making row and column sums equal will affect the sum 

of the diagonals. 

(iii)  Depending upon the choice of central block, assign-

ment of pair-numbers satisfying T, different forms of 

weak magic squares can be generated   

 
Example 7:  For singly-even, n = 6 shown below, pair num-

bers satisfying T are 18: 

(i)  Corresponding to the central block: [16, 21], [17, 20], [1, 

36], [12, 25], [15, 22], [14, 23], [31, 6] and [30, 7] = 8 nos.  

(ii) Central block: [13, 24] and [18, 19] = 2 nos.  (iii) Ex-

treme corner blocks: [34, 3], [2, 35], [9, 28], [29, 8], [4, 33], 

[32, 5], [27, 10], [11, 26] =8 nos. 

61 53 45 37 29 21 13 5 

62 54 46 38 30 22 14 6 

63 55 47 39 31 23 15 7 

64 56 48 40 32 24 16 8 

57 49 41 33 25 17 9 1 

58 50 42 34 26 18 10 2 

59 51 43 35 27 19 11 3 

60 52 44 36 28 20 12 4 

 

61 12 20 28 36 44 52 5 

3 54 19 27 35 43 14 59 

2 10 47 26 34 23 50 58 

1 9 17 33 25 41 49 57 

8 16 24 40 32 48 56 64 

7 15 42 31 39 18 55 63 

6 51 22 30 38 46 11 62 

60 13 21 29 37 45 53 4 

 

61 12 21 28 37 44 52 5 

3 54 22 27 38 43 14 59 

58 50 47 26 39 23 10 2 

1 9 48 40 32 24 49 57 

64 56 41 33 25 17 16 8 

7 15 42 31 34 18 55 63 

6 51 19 35 30 46 11 62 

60 13 20 29 36 45 53 4 

 

  1 2 3 4 5 6 

8 9 10 11 12 7 

15 16 17 18 13 14 

22 23 24 19 20 21 

29 30 25 26 27 28 

36 31 32 33 34 35 

 

31 12 18 24 30 1 

5 26 17 23 8 35 

4 10 16 15 28 34 

3 9 22 21 27 33 

2 29 14 20 11 32 

36 7 13 19 25 6 

 
31 12 13 24 30 1 

5 26 14 23 8 35 

34 28 16 15 10 4 

3 9 22 21 27 33 

2 29 17 20 11 32 

36 7 18 19 25 6 

 

6 12 13 24 30 1 

5 11 14 23 8 35 

34 28 16 15 10 4 

3 9 22 21 27 33 

2 29 17 20 26 32 

36 7 18 19 25 31 

 
6 32 3 34 35 1 111 

7 11 27 28 8 30 111 

19 14 16 15 23 24 111 

18 20 22 21 17 13 111 

25 29 10 9 26 12 111 

36 5 33 4 2 31 111 

111 111 111 111 111 111 111 
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For singly-even, n = 6, pair numbers satisfying T can be 

determined as 2*4 +2+8 = 18 and hence for singly-even, n = 

10, pair numbers satisfying T can be determined as 24 

 

 Different weak magic squares formed assuming central 

block with the pair-numbers [13, 24] and [18, 19] in differ-

ent positions: 

 
 

 

 

 WMS-1                                                              

 

 

 

 

 

 

 

 
WMS-2 

 

 

 

 
 

 

 

WMS-3  
 

 

 

 

 

 

 

 

WMS-4 

 

  

 
 

 

 

 

 

WMS-5 

 

 

 

 

 
 

 

 

 

 

 WMS-6 

 

 

 

 

 
 

 

 The above illustrations shows that different forms of 

weak magic squares can be generated, depending upon the 
choice of central block and assignment of pair-numbers sa-

tisfying T in different positions.    

 

4. Illustrations 
 

Illustration 1: Using 5 selected dummy letters, the message 

SEASEa  corresponds to plaintext of  [ 18  27]     

Let the matrix A=  








125

73

    

A  = 1 ≠ 0 and  A-1 exists 

Encryption: 









125

73 *









27

18 mod31  








414

243
mod31 

  








11

26
  represents the ciphertext, [Ao L] 

Decryption   A-1 = 













35

712
 

Now, A-1 C = 













35

712
* 









11

26
mod 31  










 97

235
mod 31 

  









27

18
 giving the original plaintext of SEa or SEA 

 

Illustration 2:  Consider the message HOUR represented 

as HOuR  corresponds to the plaintext of  [7 30 17] 

Let the matrix A= 

















 542

752

321  

Encryption:

















 542

752

321
*

















17

30

7
mod 31

















 219

283

118
mod 31 



















29

4

25

 

represents the ciphertext,: [Z E Oo] 

Decryption: A   = 1 and   A-1 = 





















102

114

123  

Now, A-1 C =





















102

114

123  *

















29

4

25 mod 31 

34 9 16 21
 

27
 

4 111 

2 29 17 14
 

11
 

32 105 

31 30 24 18 7 1 111 

6 12 19 13 25 36 111 

5 26 20 23 8 35 117 

33 10 15 22 28 3 111 

111 116 111 111 106 111 111 

 

34 9 16 21
 

27
 

4 111 

2 29 23 14
 

11
 

32 111 

31 30 24 18 7 1 111 

6 12 19 13 25 36 111 

5 26 20 17 8 35 105 

33 10 15 22 28 3 111 

111 116 117 105 106 111 111 

 
34 9 22 15

 
27

 
4 111 

2 29 17 14
 

11
 

32 105 

36 25 13 19 12 6 111 

1 7 18 24 30 31 111 

5 26 20 23 8 35 117 

33 10 21 16 28 3 111 

111 106 111 111 116 111 111 

 
34 9 22 15

 
27

 
4 111 

2 29 23 14 11
 

32 111 

36 25 13 19 12 6 111 

1 7 18 24 30 31 111 

5 26 20 17 8 35 111 

33 10 21 16 28 3 111 

111 106 117 105 116 111 111 

 
34 9 16 21

 
27

 
4 111 

2 29 17 20
 

11
 

32 111 

31 30 18 13 12 1 105 

6 7 24 19 25 36 117 

5 26 14 23 8 35 111 

33 10 22 15 28 3 111 

111 111 111 111 111 111 111 

 

34 9 16 21
 

27
 

4 111 

2 29 17 20
 

11
 

32 111 

31 30 18 13 12 7 111 

6 1 24 19 25 36 111 

5 26 14 23 8 35 111 

33 10 22 15 28 3 111 

111 117 111 111 111 105 111 
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   



















79

125

38
mod31  

















17

30

7
  

It corresponds to the original plaintext: HOuR or  HOUR   
 

Illustration 3: Let the message be HOUR   HOuR    

the plaintext: [7 30 17] 

Let A be a (3x3) magic square   A= 

















294

753

618  

Encryption:

















294

753

618
*

















17

30

7 mod 31

















332

290

188
mod 31 



















22

11

2

 

represents the ciphertext: [C L W] 

Decryption: A   = 1 and   A-1 = 

















161529

2207

112524  

Now,A-1C =

















161529

2207

112524
 *

















22

11

2
mod 31   

















575

278

565
mod31 



















17

30

7

 

corresponds to the plaintext HOuR or  HOUR   

 

Illustration 4:   Consider the message COE that corresponds 

to the plaintext: [2  14  4] 

Let the matrix A= 

















25112

4619

14130  

Encryption: 

















25112

4619

14130  *

















4

14

2 mod 31

















148

138

238
mod 31 



















24

14

21
  represents the ciphertext [V O Y] 

Decryption: A  = 6453  and   A-1 = 























24722183

266238407

32311146

6453

1  

Using the multiplicative inverse of 6453 mod 31  5 mod 

31 as 25 mod 31, it gives: 

 A-1  =  

















62429

15297

25258
 

 A-1C = 

















62429

15297

25258
*

















24

14

21
mod 31

















1089

913

1118
mod 31 

  

















4

14

2

 

corresponds to the original plaintext of  COE   

 

The involvement of the factors of 2 or 13 in any matrix is 

not affecting the encryption and decryption process if the 

matrix or magic square is non singular. 

 

Illustration 5: Suppose the message is to be encrypted be 

FLOWER (6 letters) 

 

 Taking A= 0, B =1, C = 2 ...Z=25, Au=26, Ea=27, Ee=28, 

Oo=29, Ou=30, the message FLOWER gives the plaintext 
[05 11 14 22 04 17] 

We may consider two weak magic squares (singly-even) as: 

 

 

 

 

 

 

 

 

            WMS-Fig-A                                  WMS-Fig-B 
 

 

 

 

WMS-Fig-A                                 WMS-Fig-B 

 

Encryption Process:    
 

For encryption, a block of 6 (six) letters is considered as a 

vector of 6 dimensions and multiplied by a 6*6 weak magic 

square modulo 31. Since the matrix is invertible 0A , 

decryption is ensured. Now, ciphertext = [{(6*6) weak mag-

ic square}* plaintext] mod 31.  

Let CT be the encrypted ciphertext of the message by 

using 6*6 weak magic squares shown above. 

CT(1)  = [WMS-Fig-A] * [05 11 14 22 04 17] mod 31  

 [15  06  22  0  19 16] corresponds to the 

ciphertext PGWATQ 

CT(2)  = [WMS-Fig-B] * [05 11 14 22 04 17] mod 31  

 [29  28  27  21  11  30] corresponds to 

the ciphertext OO EE EAV L OU 

 

Decryption Process:   

Decryption is done by calculating  

M(1) = (WMS-Fig-A)-1 * CT(1)  mod 31   

M(2) = (WMS-Fig-B)-1 * CT(2) mod 31 

Here,   

 AFigWMS,  = 2308920    

34 9 16 21
 

27
 

4 

 2 29 17 14
 

11
 

32 

31 30 24 18 7 1 

 6 12 19 13 25 36 

5 26 20 23 8 35 

33 10 15 22 28 3 

 

34 9 22 15 27 4 

2 29 23 14 11 32 

36 25 13 19 12 6 

1 7 18 24 30 31 

5 26 20 17 8 35 

33 10 21 16 28 3 
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 A-1 = 







































8065971211134796135708190059919393

5391909079010416022440530548790

57723019241000192410577230

71559064370364080275280431450993870

5925091210894001128019885029730

1042243527492145241284122473011227647

2308920

1  

Using the multiplicative inverse of 2308920 mod 31 9 

mod 31 as 7 mod 31, it gives: 
 

 Now, {Inverse of WMS-Fig-A} mod 31  

  =  



























617681727

181031021

813001823

2651902523

1628281924

2529323519

 mod 31 

 

Here,  BFigWMS,   = 66600  

A-1 =  







































136035459581776013157940029635113025

13614658750204242486438626111582

22216285550275283640857722185454

18886274450275283640846622152154

49566254507104115441864638322

82977271159768142081653770179

66600

1  

Using the multiplicative inverse of 66600 mod 31 

12 mod 31 as  13 mod 31: it gives 

 

{Inverse of WMS-Fig-B} mod 31  

 =  



























292321818

16282826014

222504030

630042615

81331916

66862728

  mod31   

 

M(1) = (WMS-Fig-A)-1*CT(1) mod 31 

  [05 11 14 22 04 17]  
Original plaintext of the message, FLOWER 

M(2)= (WMS-Fig-B)-1*CT(2) mod 31 

  [05 11 14 22 04 17] 

original plaintext of the message FLOWER 

 

With the application of two different weak magic squares, 

encryption and decryption can be taken up without any diffi-
culty and the original plaintext of the message, FLOWER 

can be achieved on decryption. 

 

Illustration 6: Add-on security in the cryptosystem using 

weak magic square implementation  

To show the relevance of this work to the security of 

public-key encryption schemes, a public-key cryptosystem 

RSA is taken. For convenience, let us consider a RSA cryp-

tosystem, 

Let p = 11, q = 17 and e = 7, then n = 11(17) = 187, (p-1)(q-

1) = 10(16) = 160. Now d = 23. To encrypt, C = M7 mod 187 

and to decrypt, M = C23 mod 187. 

  

Encryption Process:  
First the message is encrypted using two different weak 

magic squares : WMS-Fig-A and WMS-Fig-B.  

The plaintext represents [05 11 14 22 04 17] of the message 

FLOWER 
The encrypted ciphertext using WMS-Fig-A and WMS-Fig-

B, as shown earlier represent;  

    CT(1) = [15  06  22  0  19 16]  

CT(2) = [29  28  27  21  11  30] 

The encrypted ciphertext CT(1) and CT(2) 
 are again encrypted 

using C = M
7
 mod 187, denoted by C 

(1)
 and C

(2) 
; 

 C (1) = {CT (1) }7 mod 187  [93 184 44 0 145 135] 

C(2) = {CT(2)}7 mod 187  [ 160 173 124 98 88 123] 

 

Decryption Process:   

Decryption is done by calculating M = C23 mod 187 for the 

two Ciphertext C (1) and C(2) . It gives the decrypted cipher-

text CT (1)  and  CT(2)  

CT(1)  = [C(1)] 23 mod 187   [15  06  22  0  19 16]    

CT(2)   = [C(2)] 23 mod 187  [29  28  27  21  11  30] 

These decrypted ciphertext in two forms are again de-

crypted to get the original message.  

 (WMS-Fig-A)-1 * CT (1) mod 31 [05 11 14 22 04 17]  

Corresponds to the original plaintext of FLOWER  

 (WMS-Fig-B)-1 * CT(2)  mod 31 [05 11 14 22 04 17]  

Corresponds to the original plaintext of FLOWER 

 

It indicates that any non singular matrix or magic square 

or weak magic squares can be comfortably used as add-on 

device to a cryptosystem. The technique will provide another 

layer of security to the cryptosystem as observed by Ganapa-

thy and Mani (2009). This work can be regarded as theoreti-

cal development because the time taken for encryption and 
decryption has not been calculated that needs practical expe-

riments using computers.  

 

5. Discussions on Practical Application 
   The proposed dummy letters are the theoretical develop-

ments focusing on its merit and advantages in using magic 

squares or any type of matrices in encryption and decryption 

processes. In facts, the introduction of 5 dummy letters will 

affect the ASCII characteristics thereby inviting troubles in 

other uses.  

 

 However, spaces for introducing such dummy letters 

can be made available if the proposal is acceptable for im-

plementation throughout the world. If implemented, it will 
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give a new direction to the Computer operators and specifi-

cally a new direction to the crypt analyzers. 

 

6. Conclusions 

The technique developed by Tomba (2012) can be used 

for finding magic squares using basic Latin Squares of any 

order (n ≥ 1). However, for singly-even n, the technique can 

generate different weak magic squares depending upon the 

choice of the central block and assignment of pair-numbers 

satisfying T in different positions. Weak magic squares or 
matrices of any order (non-singular) can also be used as add-

on device to any cryptosystem. The instruction of dummy 

letters is to reduce the repetitions of vowel letters and to 

make the total number of letters as 31 (prime number) 

against the existing 26 letters. The process will affect ASCII 

characteristics. If considered for implementation of a similar 

process, a new direction for encryption and decryption will 

be provided making the decryption more complicated giving 

difficulties particularly to the crypt analyzers. 
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